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List of Symbols

Symbols Meaning

F a field
U,V,W vector spaces

α,β elements in F
Fn the set of all column matrices with n entries in F

(Fn)∗ the set of all row matrices with n entries in F
F[X ] the polynomial ring
F[[X ]] the formal power series ring

C,D categories
Set the category of sets
VecF the category of vector spaces over a field F

0V additive identity of vector space V
1V multiplicative identity of vector space V

⊂ proper subset
⊆ subset, i.e. can be equal

ι Inclusion map
↪−→ Injective arrow
π Projection map
↠ Surjective arrow

S,T Linear maps
A,B Matrices

MorC(V,W ) the set of all morphisms from V to W in category C
Hom(V,W ) Hom-set of V to W
End(A) Endomorphism ring of A
Mm×n(F) the set of all m×n matrices over F

x⃗ column vector with entries xi

x̂ row vector with entries xi

e⃗i column vector with only 1 at the i-th row and 0 at other places
êi row vector with only 1 at the i-th column and 0 at other places

α· a map that performs scalar multiplication
A· a map that performs matrix multiplication

δx the Kronecker delta function
δX the set of all Kronecker delta functions
δi j the Kronecker delta symbol

Ker(T ) Kernel of linear map T
Im(T ) Image of linear map T
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Coim(T ) Coimage of linear map T
Span(S) Span of a set of vectors S
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∏ Coproduct
⊕ Direct sum
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Symbols Meaning

T • Tensor algebra

V ∗ Dual space of V
V ∗∗ Double dual space of V

D(V ) Double

idC Identity functor in category C
F[−] Free vector space functor
|− | Forgetful functor
(−)∗ Dual space functor



1. Abstract Linear Spaces

“I assume you have learnt linear algebra.”

GUOWU MENG

1.1 Binary Operation
We start with the definition of a binary operation.

Definition 1.1 — Binary Operation. A binary operation on a set S is a mapping of the elements
of the Cartesian product S×S to S.

· : S×S→ S

(x,y) 7→ x · y

For ease of understanding, a binary operation is combining two objects into one. Hence, there
is something called unary and ternary operations, corresponding to the action of combining one
and three objects into one respectively.

■ Example 1.1 A common example of a binary operation is addition on the set of natural numbers
N.

+ : N×N→ N
(x,y) 7→ x+ y

(1.1)

■

Definition 1.2 — Associative. A binary operation · : S×S→ S is said to be associative if, for
all x,y,z ∈ S,

x · (y · z) = (x · y) · z

■ Example 1.2 A common example of an associative (binary) operation is addition on the set of
natural numbers N. For all x,y,z ∈ N, we have x+(y+ z) = (x+ y)+ z. ■
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Definition 1.3 — Identifiable. A binary operation · : S×S→ S is said to be identifiable, or
unital, if there exists an element e ∈ S, the identity or unit element, such that, for all x ∈ S

e · x = x = x · e

■ Example 1.3 A common example of an identifiable (binary) operation is multiplication on the
set of natural numbers N. The identity element is 1, and for all x ∈ N, we have x ·1 = x = 1 · x. ■

Proposition 1.1 The identity element of an identifiable operation is unique.

Proof. Let e1 and e2 be two identity elements for the operation ·. Then, for any element x ∈ S, we
have:

e1 · x = x = x · e1

e2 · x = x = x · e2

Now, consider the element e1: e1 · e2 = e1. But since e2 is an identity element, we also have:
e1 ·e2 = e2. Therefore, we conclude that e1 = e2, proving the uniqueness of the identity element. ■

Note that the two-sided identity must be unique, but one-sided identities need not be. The
following is an example of it.

■ Example 1.4 Consider a set X =

{[
1 a
0 0

] ∣∣∣∣ a ∈ R
}

with the binary operation defined as matrix

multiplication. This set has many left identity elements, but no two-sided identity element. ■

Definition 1.4 — Invertible. A binary operation · : S×S→ S is said to be invertible if, for every
element x ∈ S, there exists an element y ∈ S, called the two-sided inverse of x, denoted as x−1,
such that

x · y = e = y · x

where e is the identity element of the operation.

Remark. An invertible operation must be identifiable, since the identity element is required in the
definition of invertibility.

■ Example 1.5 A common example of an invertible (binary) operation is addition on the set of
integers Z. For every integer x ∈ Z, there exists an integer y =−x such that:

x+(−x) = 0 = (−x)+ x (1.2)

where 0 is the identity element for addition. ■

Proposition 1.2 The inverse element of an invertible operation is unique.

Proof. Let y1 and y2 be two inverses of an element x ∈ S. Then, by definition of inverse, we have:

x · y1 = e = y1 · x

x · y2 = e = y2 · x

Now, consider the element y1: y1 · x = e. But since y2 is also an inverse of x, we can substitute e
with x · y2: y1 · x = x · y2 = e. By the associativity of the operation, we can rearrange this to:

y1 = y1 · e = y1 · (x · y2) = (y1 · x) · y2 = e · y2 = y2

Thus, the inverse element is unique. ■
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The same applies to the inverse; one-sided inverses need not be unique. The example is left as
an exercise.

Definition 1.5 — Commutative. A binary operation · : S×S→ S is said to be commutative if,
for all x,y ∈ S, the following holds:

x · y = y · x

■ Example 1.6 A common example of a commutative operation is addition on the set of integers
Z. For all x,y ∈ Z, we have: x+ y = y+ x ■

Definition 1.6 — Distributive (Harmonic). A binary operation · : S× S→ S is said to be
distributive with respect to another binary operation + : S× S→ S if, for all x,y,z ∈ S, the
following holds:

x · (y+ z) = x · y+ x · z
(y+ z) · x = y · x+ z · x

The professor prefers to use the word “harmonic” instead of “distributive”. Note that it is
important to show that “which binary operation is distributive to which binary operation”. (The
two binary operations in this sentence are not commutative.)

■ Example 1.7 A common example of a distributive operation is multiplication over addition on
the set of integers Z. For all x,y,z ∈ Z, we have:

x · (y+ z) = x · y+ x · z
(y+ z) · x = y · x+ z · x

■
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1.2 Groups, Rings, Fields
With those five properties, we can construct monoids and groups.

Definition 1.7 — Monoid. A monoid is a set M equipped with a binary operation f : M×M→M
having the following properties:

1. Associative
2. Identifiable

We say (M, f ) is a monoid, and f is the monoid operation on the set M. A set M with a monoid
operation f is the monoid structure.

Definition 1.8 — Group. A group is a set G equipped with a monoid operation f : G×G→ G
with the additional property that every element has an inverse.

■ Example 1.8 (R\{0},×) is a group, but (R,×) is not a group since 0 does not have a multi-
plicative inverse. ■

Definition 1.9 — Abelian Monoid / Group. A monoid / group (S, f ) is said to be an abelian
if the operation f is commutative.

Definition 1.10 — Unital Ring. A unital ring is a set R equipped with two binary operations
f : R×R→ R (addition) and g : R×R→ R (multiplication) such that the following properties
hold:

1. Additive Group: (R, f ) is an abelian group.
2. Multiplicative Monoid: (R,g) is a monoid.
3. Distributive Property: g with respect to f .

Definition 1.11 — Commutative Ring. A commutative ring is a unital ring R such that the
multiplication operation g : R×R→ R is commutative.

■ Example 1.9 (Z,+,×) is a commutative ring. ■

Definition 1.12 — Field. A field is a commutative ring F such that every non-zero element has
a multiplicative inverse.

■ Example 1.10 (Q,+,×), (R,+,×) and (C,+,×) are fields. ■

■ Example 1.11 — Finite Field. (Z/2Z,+,×) is a field, where Z/2Z= {[0], [1]}, [0] is the set of
even integers and [1] is the set of odd integers. Note that any Z/pZ is a finite field, where p is a
prime number. ■

We may draw a diagram for the relationship between the algebraic structures.

Set Magma Semigroup

Abelian Group Group Monoid Abelian Monoid

Rng Unital Ring Commutative Ring Field

Closed Operation Associativity

Identity

Commutative Inverse Commutative

×
×

+
+

+

Multiplicative

Inverse
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1.3 Morphisms
Normally, when we have two sets we can have a set map. What if the two are in the same algebraic
structures? They are called the homomorphisms.

Definition 1.13 — Monoid Homomorphism. A monoid homomorphism is a morphism between
two monoids that preserves the monoid structure. Formally, let (M1, ·1) and (M2, ·2) be two
monoids with identity elements e1 and e2, respectively. A function f : M1→M2 is a monoid
homomorphism if:

1. f (x ·1 y) = f (x) ·2 f (y) ∀x,y ∈M1
2. f (e1) = e2

Definition 1.14 — Group Homomorphism. A group homomorphism is a morphism between
two groups that preserves the group structure. Formally, let (G1, ·1) and (G2, ·2) be two groups
with identity elements e1 and e2, respectively. A function f : G1→G2 is a group homomorphism
if:

1. f (x ·1 y) = f (x) ·2 f (y) ∀x,y ∈ G1
2. f (e1) = e2
3. f (x−1) = ( f (x))−1 ∀x ∈ G1

Proposition 1.3 The second and third properties of a group homomorphism are consequences of
the first property.

Proof. Let f : G1→ G2 be a group homomorphism satisfying the first property.
Second Property: For any element x ∈ G1, we have:

f (x) = f (x ·1 e1) = f (x) ·2 f (e1)

So for any f (x) ∈ G2, this implies that f (e1) must be the identity element in G2, i.e., f (e1) = e2.
Third Property: We have:

e2 = f (e1) = f (x ·1 x−1) = f (x) ·2 f (x−1)

This shows that f (x−1) is the inverse of f (x) in G2, i.e., f (x−1) = ( f (x))−1. ■

For monoid homomorphisms, the second property cannot be derived from the first property.
Consider the identity element e1 in M1. If we apply the first property, we get f (e1 ·1 e1) =
f (e1) ·2 f (e1). This simplifies to f (e1) = f (e1) ·2 f (e1), which does not necessarily imply that
f (e1) is the identity element in M2, i.e., f (e1) ̸= e2, but f (e1) is the idempotent element in M2.
Therefore, the second property must be explicitly stated for monoid homomorphisms.

However in the case of group homomorphisms, the existence of inverses ensures that there is
only one element that can be idempotent under the group operation, which is the identity element.
Thus, for group homomorphisms, the second property can be derived from the first property.

Definition 1.15 — Idempotent Elements. An element a is said to be idempotent if a = a2.
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To introduce the vector space, the following two morphisms are required.

Definition 1.16 — Ring Homomorphism. A ring homomorphism is a morphism between two
rings that preserves both the additive and multiplicative structures. Formally, let (R1,+1, ·1)
and (R2,+2, ·2) be two rings with identity elements 01, 11 and 02, 12, respectively. A function
f : R1→ R2 is a ring homomorphism if:

1. f (x+1 y) = f (x)+2 f (y) ∀x,y ∈ R1
2. f (x ·1 y) = f (x) ·2 f (y) ∀x,y ∈ R1
3. f (11) = 12

Definition 1.17 — Endomorphism. An endomorphism is a morphism from an algebraic struc-
ture to itself. Formally, let (A, ·) be an algebraic structure. An endomorphism f : A→ A is a set
map such that:

f (x · y) = f (x) · f (y) ∀x,y ∈ A

The following two sets are the sets of all structure-preserving maps.

Definition 1.18 — Hom-set. The set of all morphisms from an algebraic structure A to another
algebraic structure B is called the hom-set, denoted by Hom(A,B).

Definition 1.19 — Endomorphism Ring. The set of all endomorphisms of an abelian group
(A,+), denoted by End(A), forms a (non-commutative) ring under pointwise addition and
composition of set maps. The addition and multiplication operations are defined as follows:

+ : End(A)×End(A)→ End(A)

( f ,g) 7→ ( f +g : x 7→ f (x)+g(x)) f +g : A→ A

◦ : End(A)×End(A)→ End(A)

( f ,g) 7→ ( f ◦g : x 7→ f (g(x))) f ◦g : A→ A

The identity element for addition is the zero endomorphism, which maps every element to the
identity element of the group.

0 : A→ A

x 7→ 0

The identity element for multiplication is the identity endomorphism, which maps every element
to itself.

1 : A→ A

x 7→ x

Note that all endomorphisms in End(A) are group homomorphisms and End(A) = Hom(A,A).
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1.4 Linear Spaces
Then we can define what a linear structure is.

Definition 1.20 — Linear Structure. A linear structure over a field F on a set V is a pair (+, ·)
where (V,+) is an abelian group with a ring homomorphism F→ End(V ), where End(V ) is the
endomorphism ring of the abelian group (V,+).

· : F→ End(V )

α 7→ (α· : x⃗ 7→ α x⃗) α· : V →V

The ring homomorphism is a (ring) action of the field F on the abelian group (V,+), called
scalar multiplication. The ring action can be written as a binary operation:

· : F×V →V

(α, x⃗) 7→ α x⃗

A linear space / vector space is a set with a linear structure over a field on the set. In normal
textbook, a linear space will be defined as follows:

Corollary 1.1 — Linear Spaces. A linear space over a field F is a set V equipped with two
operations: vector addition + : V ×V →V and scalar multiplication · : F×V →V , satisfying
the following axioms for all u⃗, v⃗, w⃗ ∈V and α,β ∈ F:

Axiom Statement

1. Associativity of addition (⃗u+ v⃗)+ w⃗ = u⃗+(⃗v+ w⃗)
2. Existence of additive identity ∃⃗0 ∈V such that ∀⃗u ∈V , u⃗+ 0⃗ = u⃗
3. Existence of additive inverses ∀⃗u ∈V , ∃− u⃗ ∈V such that u⃗+(−u⃗) = 0⃗
4. Commutativity of addition u⃗+ v⃗ = v⃗+ u⃗
5. Distributivity of scalar multiplication with
respect to vector addition

α (⃗u+ v⃗) = α u⃗+α v⃗

6. Distributivity of scalar multiplication with
respect to field addition

(α +β )·= α ·+β ·

7. Compatibility of scalar multiplication with
field multiplication

(αβ )·= (α·)◦ (β ·)

8. Identity element of scalar multiplication F ∋ 1 7→ (1· : x 7→ x) ∈ End(V )

Remark. The first four axioms ensure that (V,+) is an abelian group, while the fifth axiom describes the
distributivity inside End(A) and the last three axioms describe the ring homomorphism.

■ Example 1.12 F is a linear space over itself with the usual addition and multiplication operations.

· : F×F→ F
(α,β ) 7→ αβ

The first F is the field acting on the second F, which is the abelian group. ■

■ Example 1.13 Let X be a set and F be a field. ( f is a set map)

F[[X ]] =Map(X ,F) def
== the set of all F-valued functions on X

== { f : X → F}
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F[[X ]] is a linear space over F with the following operations defined pointwisely:

+ : F[[X ]]×F[[X ]]→ F[[X ]]

( f ,g) 7→ ( f +g : x 7→ f (x)+g(x)) f +g : X → F

· : F×F[[X ]]→ F[[X ]]

(α, f ) 7→ (α f : x 7→ α f (x)) α f : X → F

■

■ Example 1.14 Let X be a set and F be a field.

F[X ] = Mapfin(X ,F) def
== the set of all finitely supported F-valued functions on X

== { f : X → F | f is finitely supported}

F[X ] is a linear space over F as F[X ]⊆ F[[X ]] and the operations are defined pointwisely as in the
previous example.

f : X→ F is finitely supported if the set {x ∈ X | f (x) ̸= 0} is finite or f (x) ̸= 0 for only finitely
many x ∈ X . ■

■ Example 1.15 Let t be a formal variable. Then F[[t]] def
== F[[{1, t, t2, · · ·}]] = ∑

∞
n=0 antn is the set

of all formal power series in t with coefficients in F and F[t] def
== F[{1, t, t2, · · ·}] = ∑

N
n=0 antn is the

set of all polynomials in t with coefficients in F. Both F[[t]] and F[t] are linear spaces over F. ■

There are other names for F[X ] and F[[X ]]: Polynomial ring and Formal Power Series ring,
respectively.

■ Example 1.16 Let n be a positive integer and F be a field. Then

Fn def
==


c1

...
cn


∣∣∣∣∣∣∣ ci ∈ F


is the set of all column matrices with n entries in F. Elements in Fn are written as x⃗ and are called
column vectors. Fn is a linear space over F with the following operations defined entrywisely:

+ : Fn×Fn→ Fn

(⃗a,⃗b) 7→ a⃗+ b⃗ =

a1 +b1
...

an +bn


· : F×Fn→ Fn

(α, a⃗) 7→ α a⃗ =

αa1
...

αan


Fn is a linear space over F automatically as F is a linear space over itself. ■



2. Linear Maps and Matrices

“Linear algebra is the easiest in
Mathematics”

GUOWU MENG

2.1 Linear Maps
Linear map, sometimes linear transformation, is a homomorphism preserving linear structure.

Definition 2.1 — Linear Maps. Let V and W be two linear spaces over a field F. A linear map
is a set map T : V →W such that for all u,v ∈V and α ∈ F, the following holds:

T (u+ v) = T (u)+T (v)

T (αu) = αT (u)

The set of all linear maps from V to W is denoted by Hom(V,W ). Some may write L(V,W ).

Definition 2.2 — Linear Combinations. Let V be a linear space over a field F. A linear
combination of vectors v1,v2, · · · ,vn ∈V is a vector of the form:

α
1v1 +α

2v2 + · · ·+α
nvn

where α1,α2, · · · ,αn ∈ F are scalars.

The reason for using the superscript for scalars is to avoid confusion with the subscript of
vectors. Also, it is due to the concept of dual space, which will be introduced later.

We can combine the two properties of linear maps into one property.

Corollary 2.1 — Linear Maps and Linear Combinations. A set map f : V →W between two
linear spaces over a field F is a linear map if and only if T respects linear combinations, i.e., for
all v1,v2 ∈V and all scalars α1,α2 ∈ F, the following holds:

T (α1v1 +α
2v2) = α

1T (v1)+α
2T (v2)
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■ Example 2.1 Let A be an m×n matrix with entries in a field F. The map T : Fn→ Fm defined by

T x = T (x) = Ax

where right-hand side is the usual matrix multiplication, is a linear map over F. ■

Proposition 2.1 A linear map T : Fn→ Fm is a matrix multiplication by a unique m×n matrix A
with entries in F. The matrix A is called the standard matrix of the linear map T .

Hom(Fn,Fm) Mm×n(F)

T A

A· A

natural
identification

where A· : x⃗ 7→ A⃗x and A can be expressed as follows:

A =

 | | |
T e⃗1 T e⃗2 · · · T e⃗n

| | |


The vector e⃗i is the column vector which has only the value 1 at the i-th position and 0 elsewhere.

Proof. Consider a column matrix x ∈ Fn with entries x1,x2, · · · ,xn ∈ F. Then x can be expressed as
a linear combination of the vectors e⃗1, e⃗2, · · · , e⃗n:

x = x1⃗e1 + x2⃗e2 + · · ·+ xn⃗en =
n

∑
i=1

xi⃗ei

Since T is a linear map, it respects linear combinations. Therefore, we have:

T x = T

(
n

∑
i=1

xi⃗ei

)
=

n

∑
i=1

xiT (⃗ei) =
n

∑
i=1

xi⃗ai = A⃗x

where a⃗i = T e⃗i is the i-th column of the matrix A =

 | | |
T e⃗1 T e⃗2 · · · T e⃗n

| | |

. Thus, we have

T x⃗ = A⃗x for all x⃗ ∈ Fn. This shows that T can be represented as a matrix multiplication by the
matrix A. ■

There is a simpler way to write ∑
n
i=1 xi⃗ei: The Einstein Summation Convention. When an index

variable appears twice in a single term and is not otherwise defined, it implies summation of that
term over all the values of the index. Therefore, we can write:

x = xi⃗ei

where i is summed from 1 to n.
Definition 2.3 — Linear Functional / Homogeneous Linear Function. A linear map f : Fn→
F is called a homogeneous linear function or a linear functional if for all α ∈ F and x ∈ Fn, the
following holds:

f (αx) = α f (x)
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Corollary 2.2 — Standard Matrix of a Linear Map. The standard matrix of a linear map
T : Fn→ Fm can be written as:

A =


| f1 |

| f2 |

...
| fm |


where fi : Fn→ F is the i-th component function of T , which is a linear functional.

■ Example 2.2 Let D : F[t]→ F[t] be the differentiation operator defined by:

D

(
N

∑
n=0

antn

)
=

N

∑
n=1

nantn−1

for all polynomials ∑
N
n=0 antn ∈ F[t]. The differentiation operator D is a linear map over F. The

standard matrix of D with respect to the standard basis {1, t, t2, · · · , tN} of F[t] is given by:

A =



0 1 0 0 · · · 0
0 0 2 0 · · · 0
0 0 0 3 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · N
0 0 0 0 · · · 0


■

Proposition 2.2 Let X be a set and W be a linear space over a field F. Then the set of all set maps
from X to W , denoted by Map(X ,W ), is a linear space over F with the following operations defined
pointwisely:

+ : Map(X ,W )×Map(X ,W )→Map(X ,W )

( f ,g) 7→ ( f +g) : x 7→ f (x)+g(x)

· : F×Map(X ,W )→Map(X ,W )

(α, f ) 7→ (α f ) : x 7→ α f (x)

Proof. The Map(X ,W ) is defined pointwisely by F, hence it is trivially a linear map. ■

Proposition 2.3 Let V and W be two linear spaces over a field F. Then Hom(V,W ) is a linear
space over F with the following operations defined pointwisely:

+ : Hom(V,W )×Hom(V,W )→ Hom(V,W )

( f ,g) 7→ ( f +g) : v 7→ f (v)+g(v)

· : F×Hom(V,W )→ Hom(V,W )

(α, f ) 7→ (α f ) : v 7→ α f (v)

Proof. Note that Hom(V,W ) ⊆Map(V,W ). We need to show that the operations defined above
are closed in Hom(V,W ), i.e., for all f ,g ∈ Hom(V,W ) and α ∈ F, f + g ∈ Hom(V,W ) and
α f ∈ Hom(V,W ) or equivalently, f respects linear combinations.
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Let u⃗, v⃗ ∈V and α,β ∈ F. Since f ,g ∈ Hom(V,W ), we have:

( f +g)(α u⃗+β v⃗) def
== f (α u⃗+β v⃗)+g(α u⃗+β v⃗)

== α f (⃗u)+β f (⃗v)+αg(⃗u)+βg(⃗v)

== α( f (⃗u)+g(⃗u))+β ( f (⃗v)+g(⃗v))
def
== α( f +g)(⃗u)+β ( f +g)(⃗v)

where the second equality is due to the linearity of f and g. Thus, f + g ∈ Hom(V,W ) and
α f ∈ Hom(V,W ). ■

Remark. Note that End(V ) = Hom(V,V ) is a linear space over F and also a ring with the addition and
multiplication operations defined in the previous section. The addition operation is commutative, but the
multiplication operation is not necessarily commutative.

Then we can say that

Map(Fn,Fm)⊇ Hom(Fn,Fm)∼=Mm×n(F)
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2.2 Injections, Surjections and Isomorphisms
Similar to normal maps, there are injective, surjective and bijective linear maps.

Definition 2.4 — Injective Linear Maps. A linear map f : V →W between two linear spaces
over a field F is said to be injective (or one-to-one) if for all u,v ∈V , the following holds:

f (u) = f (v) =⇒ u = v

Equivalently, f is injective if the only vector in V that maps to the zero vector in W is the zero
vector itself:

f (u) = 0 =⇒ u = 0

Definition 2.5 — Surjective Linear Maps. A linear map f : V →W is said to be surjective (or
onto) if for every w ∈W , there exists at least one v ∈V such that:

w = f (v)

Definition 2.6 — Invertible Linear Maps / Linear Equivalences. A linear map T : V →W is
said to be invertible if T has a unique two-sided inverse S, denoted by T−1, i.e., there exists a
linear map S : W →V such that:

T S = 1W and ST = 1V

where 1V : V →V and 1W : W →W are the identity maps on V and W , respectively. In this case,
we say that the linear spaces V and W are isomorphic or linear equivalent, denoted by V ∼=W .

Corollary 2.3 — Invertible Linear Maps. A linear map T : V →W is invertible if and only if
T is both injective and surjective, i.e., bijective / one-to-one correspondence.

Proof. (⇒) Assume T : V →W is invertible. By definition, there exists a linear map S : W →V
such that T S = 1W and ST = 1V .

To show that T is injective, suppose T (u) = T (v) for some u,v ∈V . We have:

S(T (u)) = S(T (v)) =⇒ (ST )(u) = (ST )(v) =⇒ 1V (u) = 1V (v) =⇒ u = v

Thus, T is injective. Then, to show that T is surjective, let w ∈W . Since T S = 1W , we have:

T (S(w)) = 1W (w) = w

Then for every w ∈W , there exists a v = S(w) ∈V such that T (v) = w. Thus, T is surjective.
(⇐) Now assume that T : V →W is both injective and surjective. We need to show that there

exists a linear map S : W →V such that T S = 1W and ST = 1V .
Since T is surjective, for each w ∈W , there exists at least one v ∈V such that T (v) = w. Define

the map S : W →V by choosing one such preimage for each w:

S(w) = a chosen v such that T (v) = w

To show that S is well-defined, we need to ensure that if T (v1) = T (v2), then v1 = v2. This follows
from the injectivity of T .

Now we verify that T S = 1W : (T S)(w) = T (S(w)) = w for all w ∈W . Thus, T S = 1W . Next,
we verify that ST = 1V : (ST )(v) = S(T (v)) = v for all v ∈V . Thus, ST = 1V . Then we can check
that S is a linear map as follows:

T (S(αw1 +βw2)) = αw1 +βw2 = αT (S(w1))+βT (S(w2)) = T (αS(w1)+βS(w2))

Therefore, T has a two-sided inverse S, and hence T is invertible. ■
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Definition 2.7 — Characteristic of a Field. The characteristic of a field F is the smallest
positive integer n such that:

1+1+ · · ·+1︸ ︷︷ ︸
n times

= 0

If no such positive integer exists, the characteristic of F is defined to be 0.

■ Example 2.3 The differentiation operator D : F[t]→ F[t] is not an injective linear map as
D(1) = 0 = D(2) but is a surjective linear map if F is a field of characteristic 0. ■
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2.3 Matrix Multiplications and Compositions of Linear Maps
We consider two linear maps T : Fn → Fm and S : Fm → Fk with standard matrices A and B,
respectively. We want to find the standard matrix of the composition ST : Fn→ Fk.

Fn Fm FkT
A

ST

BA

S
B

Proposition 2.4 The standard matrix of the composition ST : Fn→ Fk is the matrix multiplication
BA, i.e., for all x ∈ Fn,

(ST )x = B(Ax) = (BA)x

Proof. Let x ∈ Fn be a column matrix with entries x1,x2, · · · ,xn ∈ F. Then x can be expressed as a
linear combination of the standard basis vectors e⃗1, e⃗2, · · · , e⃗n:

x = x1⃗e1 + x2⃗e2 + · · ·+ xn⃗en = xi⃗ei

Consider the j-th column of BA, it is given by:

(ST )⃗e j = S(T (⃗e j)) = S(⃗a j) = B⃗a j = (BA)⃗e j

for all j = 1,2, · · · ,n. This shows that the standard matrix of the composition ST is indeed the
matrix multiplication BA. ■

Remark. Note that B is a k×m matrix and A is an m× n matrix, so the matrix multiplication BA is
defined and results in a k×n matrix.

The matrix multiplication BA can be computed as follows:

BA = B

 | | |
a⃗1 a⃗2 · · · a⃗n

| | |

=

 | | |
B⃗a1 B⃗a2 · · · B⃗an

| | |


where a⃗i = T (⃗ei) is the i-th column of the matrix A. Also,

Bx = x1⃗b1 + x2⃗b2 + · · ·+ xn⃗bn = xi⃗bi

where b⃗i = B⃗ai is the i-th column of the matrix B. Note that B is a k×m matrix, and x ∈ Fm. Thus,
the matrix multiplication Bx is defined and results in a column matrix in Fk.
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2.4 Elementary Row Operations
Definition 2.8 — Elementary Row Operations. Let A be an m×n matrix over a field F. An
elementary row operation on A is one of the following operations:

1. Row Interchange: Ri↔ R j.
2. Row Multiplication: Ri→ αRi, where α ∈ F\{0}.
3. Row Addition: Ri→ Ri +αR j, where α ∈ F and i ̸= j.

Each elementary row operation can be represented by left multiplication of A by an appropriate
m×m matrix over F. Note that all of them are invertible linear maps from Fm×n to Fm×n.

For ease of notation, we introduce the concept of matrix units, which is similar to the standard
basis vectors e⃗i.

Definition 2.9 — Matrix Units. Let m and n be two positive integers and F be a field. The matrix
unit E j

i is the m×n matrix over F with 1 in the (i, j)-th position and 0 elsewhere, i.e.,

(E j
i )

l
k =

{
1 if (k, l) = (i, j)
0 otherwise

for all 1 ≤ k ≤ m and 1 ≤ l ≤ n. The (i, j)-th position is the entry in the i-th row and j-th
column.

It can also be defined as E j
i = e⃗iê j ∈Mm×n(F) where e⃗i ∈ Fm and e⃗T

j = ê j ∈ (Fn)∗ are the
i-th and j-th standard basis vectors, respectively. The ê j is the row matrix with 1 in the j-th
column and 0 anywhere else.

Remark. Note that for any m×n matrix A over a field F, we have:

A⃗e j = the j-th column of A ∈ Fn

êiA = the i-th row of A ∈ (Fm)∗

where (Fm)∗ is the set of all row matrices with m entries in F. êi is an element in (Fm)∗ for any 1≤ i≤m.
Note the distinction between superscript and subscript.

ai
j = êiA⃗e j = the (i, j)-th entry of A

We can write the E j
i as:

E j
i = e⃗iê j =



0
...
0
1
0
...
0


[
0 · · · 0 1 0 · · · 0

]
=



0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0
0 · · · 0 1 0 · · · 0
0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0



the j-th column

the i-th row

Then we consider the row operations by using the matrix units.

Proposition 2.5 The row operation Ri↔ R j is a linear map where the standard matrix is ARi↔R j =

I−E i
i −E j

j +E j
i +E i

j.
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Proof. The linear map T : Fn→ Fn is defined pointwisely. We can say the map is:

e⃗k 7→


e⃗ j if k = i
e⃗i if k = j
e⃗k if k ̸= i, j

Then the standard matrix of T is:

ARi↔R j =

 | | | |
e⃗1 · · · e⃗ j · · · e⃗i · · · e⃗n

| | | |

= I−E i
i −E j

j +E j
i +E i

j

where I is the n×n identity matrix. ■

Proposition 2.6 The row operation Ri→ αRi where α ∈ F× := F\{0} is a linear map where the
standard matrix is ARi→αRi = I +(α−1)E i

i .

Proof. The linear map T : Fn→ Fn is defined pointwisely. We can say the map is:

e⃗k 7→

{
α e⃗i if k = i
e⃗k if k ̸= i

Then the standard matrix of T is:

ARi→αRi =

 | | |
e⃗1 · · · α e⃗i · · · e⃗n

| | |

= I +(α−1)E i
i

where I is the n×n identity matrix. ■

Proposition 2.7 The row operation Ri→ Ri +αR j where α ∈ F and i ̸= j is a linear map where
the standard matrix is ARi→Ri+αR j = I +αE j

i .

Proof. The linear map T : Fn→ Fn is defined pointwisely. We can say the map is:

e⃗k 7→

{⃗
ei +α e⃗ j if k = i
e⃗k if k ̸= i

Then the standard matrix of T is:

ARi→Ri+αR j =

 | | | |
e⃗1 · · · e⃗i +α e⃗ j · · · e⃗n

| | |

= I +αE j
i

where I is the n×n identity matrix. ■

All invertible matrices can be written as a product of a finite sequence of elementary row
operation matrices.
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2.5 Dimensions of Vector Spaces
Definition 2.10 — Finite-Dimensional Vector Spaces. A linear space V over a field F is said
to be finite-dimensional if there exists a linear equivalence T : V → Fn for some positive integer
n. In this case, we say that the dimension of V is n, denoted dim FV = n or simply dimV = n.

Definition 2.11 — Infinite-Dimensional Vector Spaces. A linear space V over a field F is
said to be infinite-dimensional if V is not finite-dimensional.

We have to prove that the dimension of a finite-dimensional vector space is well-defined.

Proposition 2.8 If there exists two linear equivalences T : V → Fm and S : V → Fn, then n = m.

Proof. Since S is linear equivalence, it has a unique two-sided inverses S−1 : Fn→V . Consider the
composition of this map:

T S−1 : Fn→ Fm

Since T S−1 is a composition of linear equivalences, it is also a linear equivalence. Mutatis mutandis,
for the opposite direction.

Now, we know that a linear equivalence between two finite-dimensional vector spaces. Then
we have dim Fn = dim Fm or n = m. Thus, the dimension of a finite-dimensional vector space is
well-defined. ■

Graphically, we have the following commutative diagram:

V Fm

Fn

S

T

T S−1

Remark. In drawing commutative diagram, we can use ↪−→ to denote an injective linear map, ↠ to denote
a surjective linear map, and ∼= or combining the two to denote an invertible linear map.



2.6 Elementary Column Operations, Canonical Form and Rank 27

2.6 Elementary Column Operations, Canonical Form and Rank
Definition 2.12 — Elementary Column Operations. Let A be an m×n matrix over a field F.
An elementary column operation on A is one of the following operations:

1. Column Interchange: Ci↔C j.
2. Column Multiplication: Ci→ αCi, where α ∈ F\{0}.
3. Column Addition: Ci→Ci +αC j, where α ∈ F and i ̸= j.

Each elementary column operation can be represented by right multiplication of A by an
appropriate n×n matrix over F. Note that all of them are invertible linear maps from Fm×n to
Fm×n.

Proposition 2.9 Any m×n matrix A can be transformed into a matrix of the form
[

Ir 0
0 0

]
by a

finite sequence of elementary row and column operations on A, where r is the rank of A.

The following is the commutative diagram of the proposition above, where B =

[
Ir 0
0 0

]
:

Fn Fm

Fn Fm

A

Q P

B

Note that P is the product of a finite sequence of elementary row operation matrices and Q
is the product of a finite sequence of elementary column operation matrices. Both P and Q are
elementary and invertible matrices. Thus, we have:[

Ir 0
0 0

]
= PAQ−1

Definition 2.13 — Canonical Form of a Matrix. The matrix
[

Ir 0
0 0

]
obtained from an m×n

matrix A by a finite sequence of elementary row and column operations on A is called the
canonical form of A.

Remark. The canonical form of a matrix defined is also called the Smith Normal Form or Normal Form
of a matrix.

Definition 2.14 — Rank of a Matrix. The rank of an m×n matrix A over a field F, denoted

by Rank(A), is the number of leading 1’s in the matrix
[

Ir 0
0 0

]
obtained from A by a finite

sequence of elementary row and column operations on A.

Remark. The value r is uniquely determined by A.

Proposition 2.10 Let A be an m× n matrix over a field F. Then the following statements are
equivalent:

A is invertible ⇐⇒ m
{[

Ir 0
0 0︸︷︷︸

n

]
is invertible ⇐⇒ Rank(A) = m = n ⇐⇒

[
Ir 0
0 0

]
= Im = In
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Proof. If A is invertible, then the matrix PAQ−1 is also invertible, as P and Q are elementary and
invertible matrices, and hence the product is invertible.

If PAQ−1 is invertible, and note that m = n is automatically true. As only square matrix
is invertible. Without the loss of generality, let say PAQ−1 is a m×m matrix, then we have
Rank(PAQ−1) = m. Also note that the rank is invarient under multiplication by invertible matrices,
so Rank(A) = Rank(PAQ−1). Hence, Rank(A) = m = n.

If Rank(A) = m = n, as the canonical matrix remains the m× n structure, we know that the
canonical form is actually a square matrix, let say m×m. Also r = Rank(A) = m. Hence the whole
canonical form become an identity matrix Im.

If the canonical form is an identity matrix I, i.e., it is invertible. Then the matrix P−1IQ = A is
also invertible for some elementary and invertible matrices P and Q. ■

Proposition 2.11 Let A be an m× n matrix over a field F. Then the following statements are
equivalent:

A has a left inverse ⇐⇒ A is injective ⇐⇒ Rank(A) = n ⇐⇒
[

Ir 0
0 0

]
=

[
In

0

]
Proof. If A has a left inverse, let say B, then we have BA = In. Then for B(A(x1)) = B(A(x2)), we
have (BA)x1 = (BA)x2, which implies x1 = x2. Hence it is injective.

If A is injective, we can consider A = P−1CQ, where C is the canonical form of the matrix A.
Then we consider P−1CQ⃗x = 0⃗. Since P−1 is invertible, it won’t produce non-trivial solutions. We
can consider C(Q⃗x) = 0⃗ = C⃗y. Then we have[

Ir 0
0 0

][⃗
y1
y⃗2

]
=

[
0
0

]
where y⃗1 and y⃗2 are column vectors with size r and n− r respectively. Then Iry⃗1 = 0, which implies
y⃗1 = 0, while y⃗2 can be anything. As A is invertible, then A⃗x = 0⃗ only has one trivial solution x⃗ = 0⃗.
Also, Q is invertible, hence y⃗ has only one trivial solution 0⃗, i.e., y⃗2 = 0⃗. Hence we have n− r = 0
due to the size of y⃗2 being 0. Hence the rank of A is n.

If Rank(A) = n, then the canonical form of A is[
Ir×r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
=

[
In×n 0n×(n−n)

0(m−n)×n 0(m−n)×(n−n)

]
=

[
In×n

0(m−n)×n

]
=

[
In

0

]

If the canonical form of A is
[

In

0

]
, then we consider PAQ−1 = C. Also, A = P−1CQ. We

construct a candidate for left inverse D = [In 0]. Then we have DC = [In 0]
[

In

0

]
= In. Then the

left inverse of A is L = QDP−1. Then we check, LA = QDP−1A = QDP−1PCQ−1 = In. Hence, A
indeed has a left inverse. ■

Proposition 2.12 Let A be an m× n matrix over a field F. Then the following statements are
equivalent:

A has a right inverse ⇐⇒ A is surjective ⇐⇒ Rank(A) = m ⇐⇒
[

Ir 0
0 0

]
=
[
Im 0

]
Proposition 2.13 For every b⃗,

[
Ir 0
0 0

]
x⃗ = b⃗ has a unique solution.

Linear Algebra is the study of linear map between two finite-dimensional vector spaces.
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V W

Fn Fm

Fn Fm

[−]B

T

[−]B′

Q

A

P

C

where C =

[
Ir 0
0 0

]
, dimV = n and dimW = m.

The coordinate maps [−]B and [−]B′ are linear equivalences and they are the trivialisation of V
and W , respectively. The matrix A is the standard matrix of the linear map T : V →W under the
bases B and B′. The matrix C is the canonical form of A. The matrices P and Q are products of
finite sequences of elementary row and column operation matrices, respectively. Both P and Q are
elementary and invertible matrices.
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2.7 Properties of Linear Maps
Let f : V →W be a linear map between two finite-dimensional vector spaces over F. We have the
following properties:

1. f is injective if and only if Ker( f ) = {0V}, i.e., the kernel is trivial.
2. f is surjective if and only if Coker( f ) = {0W}, i.e., the cokernel is trivial.
3. f is an isomorphism if and only if Ker( f ) = {0V} and Coker( f ) = {0W}.
4. f is surjective if and only if for any linear map g : W → Z, g◦ f = 0 implies g = 0.
5. f is injective if and only if for any linear map h : U →V , f ◦h = 0 implies h = 0.
Let f :V →W be a set map between linear spaces. Then the graph of f , Γ f := {(v, f (v)) | v∈V}

is a linear subspace of V ⊕W if and only if f is a linear map. Also, the domain of f is isomorphic
to Γ f .

f is injective if and only if f is an imbedding, i.e., the map f : V → Im( f ) that sends v to f (v)
is an isomorphism.



3. Linear Spaces

“Completion is one of the major great ideas
in mathematics.”

GUOWU MENG

3.1 Linear Subspaces, Kernels and Images
Here, we discuss linear spaces with more in depth terms.

Definition 3.1 — Linear Subspaces. Let W be a linear space over F and V is a subset of W ,
denoted as V ⊂W . V is a linear subspace of W if V , with + and · inherited from those of W , is
a linear space.

Proposition 3.1 Let V ⊂W . V is a subspace of W if and only if V is not empty and V is closed
under + and ·.

Proof. If V is a subspace of W , then V is non-empty as a linear space must contain a zero vector by
definition, as V is also a linear space. Also, the other two are due to the axioms of linear space.

If V is not empty and closed under + and ·, we just have to check the each axiom. ■

Definition 3.2 — Kernels. Let f : V →W be a linear map. The kernel of f , denoted as Ker( f ),
is defined as

Ker( f ) def
== {v ∈V | f (v) = 0W}= f−1({0W})

■ Example 3.1 Let f : V →W be a linear map. Ker( f ) is a subspace of domain of f , i.e., V .
First, we have 0V ∈ Ker( f ), as f (0V ) = 0W , so Ker( f ) is not empty.
Then we consider α1,α2 ∈ F and v1,v2 ∈ Ker( f ), we have

f (α1v1 +α
2v2) = α

1 f (v1)+α
2 f (v2) = α

1(0W )+α
2(0W ) = 0W

The first equality due to the linearity of f and the second is due to vi ∈ Ker( f ). ■



32 Chapter 3. Linear Spaces

Definition 3.3 — Images. Let f : V →W be a linear map. The image of f , denoted by Im( f ),
is defined as

Im( f ) def
== { f (v) | v ∈V} ⊂W

■ Example 3.2 Let f : V →W be a linear map. Im( f ) is a subspace of codomain of f , i.e., W .
First, we have f (0V ) = 0W ∈ Im( f ), so Im( f ) is not empty.
Then we consider α1,α2 ∈ F and f (v1), f (v2) ∈ Im( f ). We have

α
1 f (v1)+α

2 f (v2) = f (α1v1 +α
2v2) ∈ Im( f )

The equality is due to the linearity of f . ■

■ Example 3.3 Let W be a linear space over a field F and {Vα}α∈I be the family of subspaces of
W indexed by the element in the index set I. Then

⋂
α∈I Vα is also a subspace of W .

First, we have 0W ∈Vα for all α ∈ I, so 0W ∈
⋂

α∈I Vα . Thus,
⋂

α∈I Vα is not empty.
Then we consider α1,α2 ∈ F and v1,v2 ∈

⋂
α∈I Vα . We have v1,v2 ∈ Vα for all α ∈ I. Thus,

α1v1 +α2v2 ∈Vα for all α ∈ I. This shows that α1v1 +α2v2 ∈
⋂

α∈I Vα . ■

Then we consider the duality of the intersection and union of subspaces. Whether the union of
two subspaces is still a subspace? Unfortunately, the answer is no in general case. However, we
have the following proposition.

Proposition 3.2 Let W be a linear space over a field F and consider the family of subspaces
{Vα}α∈I . Then

⋃
α∈I Vα is a subspace of W where

⋃
α∈I Vα is the completion of

⋃
α∈I Vα under

linear combinations. We call
⋃

α∈I Vα the sum of the subspaces {Vα}α∈I , denoted by ∑α∈I Vα .
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3.2 Linear Span and Linear Independence
Definition 3.4 — Linear Span. Let V be a linear space over a field F and S ⊂V . The linear
span of S, denoted by SpanF(S) or simply Span(S) or S or ⟨S⟩, is defined as the completion of
S inside V under linear combinations.

Corollary 3.1 The linear span of S can also be defined as the intersection of all subspaces of V
containing S, which is the smallest linear subspace of V containing S. It can be written as:

Span(S) =
⋂
α∈I

Vα ⊂V where I = {Vα ⊂V |Vα is a subspace of V and S⊂Vα}

Remark. Note that I is not empty as V ∈ I. Thus, Span(S) is well-defined. V is the largest subspace of
itself and {0V} is the smallest subspace of V .

Proposition 3.3 Let W be a linear space over a field F and S⊂W . Then

Span(S) =

{
n

∑
i=1

α
isi | n ∈ N,α i ∈ F,si ∈ S

}

Note that the summation is a finite summation.

Definition 3.5 — Linear Independences. Let W be a linear space over a field F and V1, · · · ,Vk
be subspaces of W . The subspaces V1, · · · ,Vk are said to be linearly independent if Vi ̸= {0W}
for all i and there is one and only one way to split 0W ∈W as a sum of vectors from each Vi, i.e.,
if vi ∈Vi for all i and ∑

k
i=1 vi = 0W , then vi = 0W for all i.

Vectors v1,v2, · · · ,vk ∈W are said to be independent if the subspaces Span(v1), Span(v2), · · · ,
Span(vk) are linearly independent.

Proposition 3.4 v1,v2, · · · ,vk ∈W are linearly independent if and only if there is one and only one
way to write 0W ∈W as the combination of v1, · · · ,vk with coefficients in F, i.e., the equation

α
1v1 + · · ·+α

kvk = 0W

has only the trivial solution, i.e., α i = 0 for all i.



34 Chapter 3. Linear Spaces

3.3 Linearly Independent Sets and Spanning Sets
If we consider a set, what does it mean by being linearly independent? Is there any properties for
spanning if the set spans the whole codomain?

Definition 3.6 — Linearly Independent Sets. Let V be a linear space over a field F. A subset
S⊆V is said to be a linearly independent set of vectors in V if no elements in S can be expressed
as a linear combination of the finitely many other elements in S.

Definition 3.7 — Spanning Sets. Let V be a linear space over a field F. A subset S⊆V is said
to be a spanning set of V if Span(S) =V .

■ Example 3.4 Let V = F3 and consider the three vectors e⃗1, e⃗2 and e⃗3.
Then the set S = {⃗e1, e⃗2, e⃗1 + e⃗2} is not a spanning set of V as Span(S) = Span{⃗e1, e⃗2} ̸=V . If

we consider the Span{⃗e1, e⃗2}=W , then {⃗e1, e⃗2} is a minimal spanning set of W .
The set S = {⃗e1, e⃗1 + e⃗2, e⃗1 + e⃗2 + e⃗3} is a spanning set of V . ■

Remark. If we consider the matrix of {⃗e1, e⃗2, e⃗1 + e⃗2} with respect to the standard basis of F3, we have:

A =

1 0 1
0 1 1
0 0 0


Then we have Rank(A) = 2 < 3. Thus, the set is not a spanning set of F3.

■ Example 3.5 Consider the subset S = {1, t, t2, · · ·} ⊂ F[[t]]. Then Span(S) = F[t] which is a
proper subspace of F[[t]]. As the linear combination of finitely many elements in S is a polynomial,
but an element in F[[t]] can be a power series. ■

Definition 3.8 — Minimal Spanning Sets. Let V be a linear space over a field F. A spanning
set S⊆V is said to be a minimal spanning set of V if no proper subset of S is a spanning set of
V , i.e., S′ ⊂ S =⇒ Span(S′)⊂ Span(S) =V where Span(S′) ̸=V .

The following is also the equivalence definition of linearly independent sets, spanning sets and
minimal spanning sets.

Given a linear space V over a field F. We define the order set S := {⃗v1, v⃗2, · · · , v⃗n} ⊆V . The
order set S forms a linear map φS : Fn→V defined by:

φS(⃗x) = φS




x1

x2

...
xn


= x1⃗v1 + x2⃗v2 + · · ·+ xn⃗vn =

n

∑
i=1

xi⃗vi

Proposition 3.5 The order set S := {⃗v1, v⃗2, · · · , v⃗n} ⊆V is said to be linearly independent if and
only if the linear map φS : Fn→V defined above is injective.

Proposition 3.6 The order set S := {⃗v1, v⃗2, · · · , v⃗n} ⊆V is said to be a spanning set of V if and only
if the linear map φS : Fn→V defined above is surjective.

Proposition 3.7 The order set S := {⃗v1, v⃗2, · · · , v⃗n} ⊆V is said to be a minimal spanning set of V
if and only if the linear map φS : Fn→V defined above is bijective.
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Remark. A order minimal spanning set is regarded as basis.

■ Example 3.6 Let X be a set, F[[X ]] be the set of all functions f : X → F and F[X ] be the set
of all finite support functions f : X → F. For each x ∈ X , we define the Kronecker delta function
δx : X → F at point x by

δx(y) =

{
1 if y = x
0 if y ̸= x

Clearly, δx has finite support, thus δx ∈ F[X ].
Then we have a set δX = {δx | x ∈ X} ⊂ F[X ]. We have Span(δX) = F[X ] as any finite support

function f : X → F can be written as a linear combination of finitely many delta functions. Thus,
δX is a spanning set of F[X ].

Moreover, δX is a linearly independent set. Assume that there exists a finite linear combination
of other delta functions such that δx = ∑αyδy. Then we have δx(x) = 1 = ∑αyδy(x) = 0. This is a
contradiction. Thus, δX is a linearly independent set. ■
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3.4 Group Actions
Next, we discuss quotient space. However, before introducing quotient space, we have to understand
what group actions are.

Definition 3.9 — Group Actions. Let G be a group and X be a set. A left group action of G
on X is a map · : G×X → X , (g,x) 7→ g · x, such that for all g1,g2 ∈ G and x ∈ X , the following
properties hold:

1. Compatibility: (g1g2) · x = g1 · (g2 · x).
2. Identity: e · x = x where e is the identity element of G.

Same for the right group action of G on X , just think it dually.
Consider a rotation on a plane. It is a group action of the group SO(2) on the set R2.

g =

(
cosθ −sinθ

sinθ cosθ

)
Then we have the following group action:

Orbits

g · v⃗

x

y

v⃗

Definition 3.10 — Orbits. Let G be a group acting on a set X . The orbit of the action through a
point x ∈ X , denoted as G · x, is defined as the set of points in X that can be reached from x by
the action of elements of G, i.e.,

G · x = {g · x | g ∈ G}

There is only two situation for the orbits, either the origin or a circle.
In the following section, we may regard the orbits G · x as a coset.

Definition 3.11 — Partition. A partition of a set X is a collection of non-empty, disjoint subsets
of X whose union is X . The partition of the set X is the same as an equivalence relation on X .

Orbits give a partition of the set X , i.e., X can be expressed as the disjoint union of its orbits.
The orbits of the action are the equivalence classes of the equivalence relation.

Let f : X → Y be a map between two sets X and Y . Then f defines a partition of X by the
equivalence relation. The equivalence classes are the preimages of points in Y , i.e., f−1(y) for each
y ∈ Y .
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3.5 Quotient Spaces
Let V be a subspace of a linear space W over a field F. We know (V,+) is an abelian group. Then
we have the group action of V on W defined by: (v,w) 7→ v ·w for all v ∈V,w ∈W . v ·w is defined
as v+w where + is the addition operation in W . We know that (v1 + v2)+w = v1 +(v2 +w) and
0V +w = w for all v1,v2 ∈V and w ∈W . Thus, it is a group action.

The following commutative diagram illustrates the group action, where the associative and
identity properties are inherited from the addition operation in W , i.e., we need not prove the group
action as above.

W ×W

V ×W W

This group action defines the following equivalence relation on W , where V is the acting group:

w1 ∼ w2 =⇒ ∃v ∈V such that w2 = v+w1

⇐⇒ w2−w1 ∈V

Definition 3.12 — Quotient Spaces. Let W be a linear space over a field F and V be a subspace
of W . The quotient space of W by V , denoted by W/V , is defined as the set of orbits of the
group action of V on W , or the set of V -equivalence classes in W with the equivalence relation
defined above, i.e.,

W/V = {V ·w | w ∈W}= {w+V | w ∈W}

where V ·w = w+V = {w+ v | v ∈V} is called the coset of V in W containing w.

Definition 3.13 — Quotient Map. The natural surjective map π : W →W/V defined by
π(w) = w+V for all w ∈W is called the quotient map or projection map. Note that w+V can
be written as w or [w].

In general, if a group G acts on a set X , then the quotient set X/G is defined as the set of orbits
of the action, i.e.,

X/G = {G · x | x ∈ X}

Similarly, there is a natural surjective map π : X → G defined by π(x) = G · x for all x ∈ X .
The following is a graphical illustration of the quotient space.

O

V = [0]

[w′1] = [w1] = w1 +V

[w2] = w2 +V

[w3] = w3 +V w4 +V = [w4]

w5 +V = [w5]

w6 +V = [w6]

w1
v

w1 + v

w′1

v′

w′1 + v′
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We can see that each line parallel to V represents a coset of V in W . The quotient space W/V
is the set of all such lines. We may consider each line as an orbit of the group action of V on W .
Note that there is not only one unique way to represent the coset w+V . Just like the illustration
above, w1 and w′1 are two different representatives of the same coset w1 +V = w′1 +V . Note that
their difference is an element in V , i.e., w1−w′1 ∈V .

Note that we now do not know whether W/V is a linear space or not. We will show that it is
indeed a linear space by using the following proposition.

Proposition 3.8 There is a unique linear structure on W/V such that the quotient map π : W →
W/V is a linear map.

Proof. Assume that such a linear structure exists. Then for all w1,w2 ∈W and α1,α2 ∈ F, we have

π(α1w1 +α2w2) = [α1w1 +α2w2] = α1[w1]+α2[w2] = α1π(w1)+α2π(w2)

This suggests that α1[w1]+α2[w2] should be defined as [α1w1 +α2w2] if π is linear. As there is
only one formula, this proves the uniqueness of the linear structure on W/V .

Then we consider whether the linear combination on W/V is well-defined. Assume that
[w1] = [w′1] and [w2] = [w′2], i.e., w1−w′1 ∈V and w2−w′2 ∈V . Then we have

(α1w1 +α2w2)− (α1w′1 +α2w′2) = α1(w1−w′1)+α2(w2−w′2) ∈V

which means [α1w1 +α2w2] = [α1w′1 +α2w′2]. This means that the linear combination is indepen-
dent of the choice of representatives. Thus, the linear combination is well-defined. ■

In the normal procedure, we first define the operations and then check whether the set is closed
under the operations and zero exists. Then we check whether the map preserves the structure and
show the uniqueness of the structure. However, in this case, we first assume that such a structure
exists and then derive the operations from this assumption. Subsequently, we check whether the
operations are well-defined.

In the first part, we show that there is only one possible way to define the operations if the
quotient map is linear. Moreover, the definition ensures the preservation of the linear structure. In
the second part, we show that the operations on the set W/V are well-defined.

If we consider the graphical representation of the quotient space W/V and the quotient map π ,
we may use the following diagram:

0

V +a V b+V (3.5,0)+V

a

b
W

π

W/V
[a] [0] [b] [(3.5,0)]
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3.6 Universal Properties
Proposition 3.9 Let V be a linear space over a field F and S be a minimal spanning set of V .
Then for any set map φ : S→ Z, where Z is any linear space over F, there is a unique linear map
φ̃ : V → Z such that φ̃ |S = φ .

In other words, the following diagram commutes:

s ∈ S Z

s ∈V

φ

ι

φ̃

Proof. Assume the existence of such a linear map φ̃ . Then for all s ∈ S, we have φ̃ ◦ ι(s) = φ̃(s) =
φ(s).

Since S is a minimal spanning set of V , for any v ∈V , we have a unique way to write v as a
linear combination of finitely many elements in S, i.e., v = ∑

n
i=1 αisi where αi ∈ F and si ∈ S are

distinct. Then we have

φ̃(v) = φ̃

(
n

∑
i=1

α
isi

)
=

n

∑
i=1

α
i
φ̃(si) =

n

∑
i=1

α
i
φ(si)

This shows the uniqueness of φ̃ .
Then we claim that the map φ̃ defined above is well-defined. Since S is a minimal spanning set

of V , there is only one way to write each element in V as a linear combination of elements in S.
Thus, the definition of φ̃ does not depend on the choice of representation of v. This shows that φ̃ is
well-defined. ■

Note that we first define the map on the spanning set and then extend it to the whole space.
The uniqueness is due to the fact that there is only one way to write each element in V as a linear
combination of elements in S and the existence is due to the fact that we can always define the map
on V by using the linear combination.

This proposition shows thats a linear space with a minimal spanning set has the following
universal property: any set map from the minimal spanning set to another linear space can be
uniquely extended to a linear map from the whole space to that linear space.

φ φ̃

Map(S,Z) Hom(V,Z)

φ̃ ◦ ι φ̃

∼=

Proposition 3.10 Let W be a linear space over a field F and V be a subspace of W . Then we have
the following commutative diagram:

V

W

Z W/V

ι

0 0

∀φ π

∃!φ̃
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where Z is any linear space over F and φ : W → Z is any linear map such that φ(v) = 0Z for all
v ∈V . Then there is a unique linear map φ̃ : W/V → Z such that φ̃ ◦π = φ .

Proof. Assume the existence of such a linear map φ̃ . Then for all w ∈W , we have φ̃([w]) = φ(w).
However, this may not be well-defined. Then, we check whether it is well-defined. Assume that
[w] = [w′], then we have φ̃([w′]) = φ(w′). Note that w−w′ ∈ V . Thus, we have φ(w′−w) = 0Z .
This means that φ(w′)−φ(w) = 0Z , i.e., φ(w′) = φ(w). This shows that φ̃([w′]) = φ̃([w]). Thus,
φ̃ is well-defined.

Then we consider the linearity of φ̃ . For all [w1], [w2] ∈W/V and α1,α2 ∈ F, we have

φ̃(α1[w1]+α
2[w2]) = φ̃([α1w1 +α

2w2])

= φ(α1w1 +α
2w2)

= α
1
φ(w1)+α

2
φ(w2)

= α
1
φ̃([w1])+α

2
φ̃([w2])

This shows that φ̃ is linear. ■

Remark. Note that [0] = V . If v ∈ V , then [v] = v+V = {v+ v′ | v′ ∈ V} = {v′′ | v′′ ∈ V} = V = [0].
Thus, π(v) = [v] = [0] for all v ∈ V . So the map from V →W/V is the zero map. Thus, the triangle
commutes. Also, the map from v to Z is defined as the zero map, making the construction of φ̃ is possible,
as the key step is that φ(w′−w) = 0Z for all w′−w ∈V .

Generally, we may consider the following commutative diagrams, where left is the general case
and right is the dual case:

Im( f )

W

Z Coker( f )

ι

0 0

∀φ π

∃!φ̃

Coim( f )

W

Z Ker( f )

ι

0 0

∀φ π

∃!φ̃

Definition 3.14 — Cokernel. Let f : V →W be a linear map between two linear spaces over a
field F. The cokernel of f , denoted by Coker( f ), is defined as the quotient space of W by the
image of f , i.e.,

Coker( f ) =W/ Im( f ) =W/Im( f )

where Im( f ) = { f (v) | v ∈V} is the image of f .

Definition 3.15 — Coimage. Let f : W →V be a linear map between two linear spaces over a
field F. The coimage of f , denoted by Coim( f ), is defined as the quotient space of the domain
W by the kernel of f , i.e.,

Coim( f ) =W/Ker( f ) =W/Ker( f )
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where Ker( f ) = {w ∈W | f (w) = 0V} is the kernel of f .
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3.7 Sum and Direct Sum
Definition 3.16 — Sum of Subspaces. Let V1 and V2 be two subspaces of a linear space W
over a field F. The sum of V1 and V2, denoted by V1 +V2, is defined as the set of all possible
sums of elements from V1 and V2, i.e.,

V1 +V2 = {v1 + v2 | v1 ∈V1,v2 ∈V2}

Proposition 3.11 The sum V1 +V2 of two subspaces V1 and V2 of a linear space W over a field F is
also a subspace of W .

Proposition 3.12 V1 +V2 = Span(V1∪V2).

Recall the definition of linear independence (Definition 3.5): V1 and V2 are said to be linearly
independent if V1 and V2 are non-trivial and x1 + x2 = 0 for xi ∈Vi implies that x1 = x2 = 0.

We have the following definition for weakly linear independence.

Definition 3.17 — Weak Linear Independence. Let V1 and V2 be two subspaces of a linear
space W over a field F. V1 and V2 are said to be weakly linearly independent if x1 + x2 = 0 for
x1 ∈V1 and x2 ∈V2 implies that x1 = x2 = 0. Note that V1 or V2 can be trivial.

Then the definition of direct sum is as follows.
Definition 3.18 — Direct Sum of Subspaces. Let V1 and V2 be two subspaces of a linear space
W over a field F. The direct sum of V1 and V2, denoted by V1⊕V2, is defined as the sum V1 +V2
when V1 and V2 are weakly linearly independent, i.e.,

V1⊕V2 =V1 +V2

when V1 and V2 are weakly linearly independent.

Recall (Definition 2.10) that W is a finite-dimensional if W ∼= Fn for some positive integer n. It
is equivalent to saying that W is finitely spanned, i.e., having a finite spanning set.

Proof. If we have a map φ : Fn →W , then W = Span{φ(e1),φ(e2), · · · ,φ(en)}. However, the
set {φ(e1),φ(e2), · · · ,φ(en)} may not be linearly independent. Thus, we can always find a min-
imal spanning set of W from it. WLOG, we can say W = Span{φ(e1),φ(e2), · · · ,φ(ek)} for
some k ≤ n. Then using (Proposition 3.7), we have a bijective map φ{e1,e2,··· ,ek} : Fk →W =
Span{φ(e1),φ(e2), · · · ,φ(ek)}. ■

Proposition 3.13 W is finite-dimensional if and only if all its subspaces and quotient spaces are
finite-dimensional.

Proof. For subspace U ⊆W and W is finite-dimensional, we have:

W U

Fn

φ

Then the map φ : Fn→U is defined by x = α 1⃗e1 + · · ·+α n⃗en 7→ φ(x) = α1φ (⃗e1)+ · · ·+αnφ (⃗en).
Thus, U is finitely spanned, U = Span{φ (⃗e1),φ (⃗e2), · · · ,φ (⃗en)}.

For quotient space W/V and W is finite-dimensional, we have:

V W W/Vι π

Then we know that π (⃗e1),π (⃗e2), · · · ,π (⃗en) spans W/V . Thus, W/V is finitely spanned. ■
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Proposition 3.14 dim (V1 +V2)≤ dimV1 +dimV2. Equality holds if and only if the sum is direct.

Proof. For V1 and V2, we can find the minimal spanning sets S1 and S2 respectively. Then we claim
that S1∪S2 spans V1 +V2, i.e., V1 +V2 = Span{S1∪S2}.

This is because for all v ∈ V1 +V2, we have v = v1 + v2 for some vi ∈ Vi. Then we can write
vi as a linear combination of finitely many elements in Si, i.e., vi = ∑

ni
j=1 α

j
i s j

i where α
j

i ∈ F and

s j
i ∈ Si are distinct. Thus, we have

v = v1 + v2 =
n1

∑
j=1

α
j

1s j
1 +

n2

∑
j=1

α
j

2s j
2 ∈ Span{S1∪S2}

This shows that V1 +V2 ⊆ Span{S1∪S2}. The other direction is obvious. Thus, we have V1 +V2 =
Span{S1∪S2}.

Then we have dim (V1 +V2)≤ |S1|+ |S2|= dimV1 +dimV2, as S1∪S2 may not be a minimal
spanning set. The equality holds if and only if S1∪S2 is a minimal spanning set of V1 +V2, which
is equivalent to saying that V1 and V2 are weakly linearly independent. Thus, the equality holds if
and only if the sum is direct. ■
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3.8 Exact Sequence
Definition 3.19 — Exact and Exact Sequence. A sequence of linear maps between linear
spaces over a field F,

· · · Vi−1 Vi Vi+1 · · ·fi−2 fi−1 fi fi+1

is said to be exact at Vi if

Im( fi−1) = Ker( fi)

i.e., the image of the map before Vi is equal to the kernel of the map after Vi.
The sequence is said to be an exact sequence if it is exact at every Vi.

■ Example 3.7 For the following short exact sequence:

0 V1 V V2 0
i1 j2

for which V2 is assumed to have a minimal spanning set. Then
• the exactness at V1 implies that {0V1}= Im(0) = Ker(i1), thus i1 is injective.
• the exactness at V implies that Im(i1) = Ker( j2), thus V1 ∼= Im(i1)⊆V .
• the exactness at V2 implies that Im( j2) = Ker(0) =V2, thus j2 is surjective.
We can draw an Euler diagram to illustrate the situation:

V1 V V2

Im(0) Ker(i1)

Im(i1)

Im(i1)

Ker( j2)

Ker( j2)

Im( j2)

Im( j2)

Ker(0)

Ker(0)

0 0

0V1 0V 0V2

There are some facts about the short exact sequence:
• j2 has a right inverse, i.e., there exists a linear map i2 : V2→V such that j2 ◦ i2 = idV2 .

This is because V2 has a minimal spanning set. Thus, for each element in the minimal
spanning set of V2, we can choose one representative in V and define the map on the minimal
spanning set. Then we can extend it to the whole space.

• i1 has a left inverse, i.e., there exists a linear map j1 : V →V1 such that j1 ◦ i1 = idV1 .
This is because i1 is injective. Thus, for each element in V1, we can choose one representative
in V and define the map on the whole space by sending all other elements to zero.

The exact sequence becomes:

0 V1 V V2 0

i1

j1

j2

i2

■

There are some equalities about the composition of the maps in an exact sequence.
• j1 ◦ i1 = idV1 because j1 is a left inverse of i1.
• j2 ◦ i2 = idV2 because i2 is a right inverse of j2.
• j2 ◦ i1 = 0 because Im(i1) = Ker( j2).
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• j1 ◦ i2 = 0 because Im(i2) = Ker( j1).
• i1 ◦ j1 + i2 ◦ j2 = idV because for all v ∈ V , we have v = (v− i2( j2(v)))+ i2( j2(v)) where

v− i2( j2(v)) ∈ Im(i1) and i2( j2(v)) ∈ Im(i2). Also, Im(i1)∩ Im(i2) = {0V}.
There is actually one more fact about the short exact sequence.

Proposition 3.15 V ∼= Im(i1)⊕ Im(i2).

Proof. The meaning of V ∼= Im(i1)⊕ Im(i2) is that for any x ∈ V , it can be uniquely written as
x = x1 + x2 where xi ∈ Im(ii). Why? Suppose x = x1 + x2 = x′1 + x′2 where xi,x′i ∈ Im(ii). Then
we have (x1− x′1)+(x2− x′2) = 0. Note that x1− x′1 ∈ Im(i1) and x2− x′2 ∈ Im(i2). Thus, we have
x1− x′1 = 0 and x2− x′2 = 0. This shows the uniqueness.

Note that all V , V1 and V2 are finite-dimensional. Then V2 has a minimal spanning set, let say S.
Then we construct i2 : s 7→ i2(s) where i2(s) is a choice of element from j−1

2 (s) ̸= /0 for each s ∈ S.
Then we extend it to the whole space linearly. Thus, i2 is injective.

Then we want to prove that Im(i1) and Im(i2) are weakly independent. Assume that x1 +x2 = 0
where xi ∈ Im(ii). Then we have j2(x1 + x2) = j2(x1)+ j2(x2) = 0. Note that j2(x1) = 0 because
x1 ∈ Im(i1) = Ker( j2), the exactness of V . Thus, we have j2(x2) = 0. However, j2 is injective on
Im(i2) because j2 ◦ i2 = idV2 . Thus, we have x2 = 0 and x1 = 0. This shows that Im(i1) and Im(i2)
are weakly independent.

Finally, we want to prove that Im(i1)+ Im(i2) = V . For all x ∈ V , we let x2 = i2( j2(x)) ∈
Im(i2) and x1 = x− x2. Then we have to show that x1 ∈ Im(i1) = Ker( j2). Note that j2(x) =
j2(x1) + j2(x2) = j2(x1) + j2 ◦ i2( j2(x)) = j2(x1) + j2(x). This shows that j2(x1) = 0. Thus,
x1 ∈ Ker( j2) = Im(i1). This shows that Im(i1)+ Im(i2) =V .

Actually j1 is the projection from Im(i1)⊕ Im(i2) to Im(i1) and it exists due to the uniqueness
of the decomposition. ■

The equalities can be summarized as follows:

jm ◦ in = δmnidVn ,
2

∑
k=1

ik ◦ jk = idV

For the dimension of the spaces, we have:

dimV = dim Im(i1)+dim Im(i2) = dimV1 +dimV2

As V1 ∼= Im(i1) and V2 ∼= Im(i2). i1 and i2 are injective and Vk→ Im(ik) are surjective.
Also, we know that dimV ≥ dimV1 and dimV ≥ dimV2. Similarly, we have dimW ≥ dimV

and dimW ≥ dimW/V , where V is a subspace of W .
Consider Proposition 3.14, more specifically, we have the following dimension formula:

dim (V1 +V2) = dimV1 +dimV2−dim (V1∩V2)

To proof the equality, we can consider the following short exact sequence:

0 V1∩V2 V1 (V1 +V2)/V2 0ι π

Moreover, we have the isomorphism between (V1 +V2)/V2 and V1/(V1∩V2).
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“No problem is difficult in linear algebra.
All problems are trivial.”

GUOWU MENG

3.9 Fudan University Problems
Students from Fudan University asked two hard problems but were completely cooked by Professor
Guowu Meng

3.9.1 The story behind the two problems
“Well, [in] linear algebra basically, no problem is difficult. All problems are trivial.

“People don’t believe me, because many years ago, more than 20 years ago, there were two
exchange students from Fudan University, and when they came here, they carry solution manual
with some sets of hard linear algebra problems. I told them ‘nothing is difficult’.

“They don’t believe me, so they dig out one hard problem from that solution book. Well, I told
them I haven’t seen this problem before, because when I was educated as a physicist engineer, I
don’t work on hard problems. I just deal with textbook. I don’t read anything extra. I don’t know
but doesn’t matter. Let me just write everything on board, and then pretty soon I figured out the
answer.

“Ok may be they say that I am lucky. Then the next day they came back with another problem.
So again, I said I don’t know how to do it but anyway [it] doesn’t matter. I put everything on board,
then I draw some obvious facts in my mind about linear algebra.

“I say no problems are difficult in linear algebra under the assumption that you know linear
algebra inside-out, you know every facts about it. Usually you will say I have seen this type of
problems before, and then step 1, step 2 step 3, but this is a very wrong way to do it. This is the
way that AI does it, but we are human, we are smarter than machine.

“When I do it, there are some keywords and each keywords remind me of some facts related to
it, and keep doing this. Then I see a path from here to there.”

— Guowu Meng on the lecture of September 19, 2025.

3.9.2 Introduction to the two problems
Later, we will examine the two problems that were posed by students from Fudan University and
solved by Professor Guowu Meng. Before examining the two problems, we need to introduce some
basic terminology in standard linear algebra.

Let A be a m×n matrix. Then we consider the following diagram:

Ker( f )⊆ Fn Fm ⊇ Im( f )
f

A

In normal linear algebra, we have four fundamental concepts: column space, null space, rank
and nullity.

Definition 3.20 — Column Space. The column space of A, denoted by Col(A), is defined as
the image of the linear map f : Fn→ Fm defined by f (x) = Ax, i.e.,

Col(A) = Im( f ) = {Ax | x ∈ Fn} ⊆ Fm
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Definition 3.21 — Null Space. The null space of A, denoted by Nul(A), is defined as the kernel
of the linear map f : Fn→ Fm defined by f (x) = Ax, i.e.,

Nul(A) = Ker( f ) = {x ∈ Fn | Ax = 0} ⊆ Fn

The alternative, or normal, definition of rank is as follows.

Definition 3.22 — Rank. The rank of A, denoted by Rank(A), is defined as the dimension of
the column space of A, i.e.,

Rank(A) = dim Col(A) = dim Im( f )≤ m

Definition 3.23 — Nullity. The nullity of A, denoted by Nullity(A), is defined as the dimension
of the null space of A, i.e.,

Nullity(A) = dim Nul(A) = dim Ker( f )≤ n

3.9.3 Problem 1
Problem 3.1 Suppose we have three matrices A, B and C. Then prove that

Rank(B)+Rank(ABC)≥ Rank(AB)+Rank(BC)

Proof. We consider the following diagram:

0 Col(BC) Col(B) Col(B)/Col(BC) 0

0 Col(ABC) Col(AB) Col(AB)/Col(ABC) 0

C

A

π1

A ∃!φ

C π2

We denote the injective map with red color and the surjective map with blue color. Notice that
there is a surjective map from Col(B) to Col(AB)/Col(ABC) due to the surjectivity of A and π2.
Then we denote this surjective map with teal color.

Then we have to consider whether the map from Col(BC) to Col(AB)/Col(ABC) is zero.
If the map is zero, then we can construct a unique surjective map φ from Col(B)/Col(BC) to
Col(AB)/Col(ABC) due to the universal property of quotient space.

Note that the map from Col(BC) to Col(AB)/Col(ABC) is a zero map. As both upper and lower
sequences are exact, we have the exactness at Col(AB), i.e., Im(C) = Ker(π2). Thus the composite
map π2 ◦C is a zero map. This shows that the map from Col(BC) to Col(AB)/Col(ABC) is a zero
map.

Then we can construct a unique surjective map φ from Col(B)/Col(BC) to Col(AB)/Col(ABC)
due to the universal property of quotient space.

Finally, we consider the dimensions of the spaces. Note that φ is surjective, thus we have

dim Col(B)/Col(BC)≥ dim Col(AB)/Col(ABC)

dim Col(B)−dim Col(BC)≥ dim Col(AB)−dim Col(ABC)

dim Col(B)+dim Col(ABC)≥ dim Col(AB)+dim Col(BC)

Rank(B)+Rank(ABC)≥ Rank(AB)+Rank(BC)

■
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3.9.4 Problem 2
Problem 3.2 If A is a n×n matrix then prove that

Rank(An) = Rank(An+1)

Proof. We consider the following diagram:

In Im(A) Im(A2) · · · Im(An) · · ·A A A A A

As In ⊇ Im(A)⊇ Im(A2)⊇ ·· · , we know that

n = dim In ≥ r(A)≥ r(A2)≥ ·· ·

As the space is finite-dimensional, the sequence will eventually become constant. That means
there exists a k such that for all j ≥ k, we have r(A j) = r(A j+1).

There are two possibilities: either k ≤ n or k > n. If k ≤ n, the equality works properly, as for
every j ≥ k, including j = n, such that r(A j) = r(A j+1) implies r(An) = r(An+1).

For k > n, consider the strict inequality, we know that each time the dimension must drop at
least 1. Without the loss of generality, we may consider the sequence of dimension as n,n−1,n−
2, · · · ,1,0. This involves n times. So it is impossible to have k > n. ■
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3.10 Rank-Nullity Theorem
Actually, using short exact sequence, we can easily prove the rank-nullity theorem.

Theorem 3.1 — Rank-Nullity Theorem. For a linear map f : V →W between finite-dimensional
linear spaces over F, we have

Rank( f )+Nullity( f ) = dimV

Proof. Consider the following short exact sequence:

0 Ker( f ) V Im( f ) 0ι f

Then we have V ∼= Ker( f )⊕ Im( f ). Thus, we have dimV = dim Ker( f )+dim Im( f ). This shows
that Rank( f )+Nullity( f ) = dimV . ■

Moreover, we have the following corollary.

Corollary 3.2 For a linear map f : V →W between finite-dimensional linear spaces over F, we
have

dimW = Rank( f )+dim Coker( f )

Proof. Consider the following short exact sequence:

0 Im( f ) W Coker( f ) 0ι π

Then we have W ∼= Im( f )⊕Coker( f ). Thus, we have dimW = dim Im( f )+dim Coker( f ). This
shows that dimW = Rank( f )+dim Coker( f ). ■

Corollary 3.3 For a linear map f : V →W between finite-dimensional linear spaces over F, we
have

dimV = Nullity( f )+dim Coim( f )

Proof. Consider the following short exact sequence:

0 Ker( f ) V Coim( f ) 0ι π

Then we have V ∼= Ker( f )⊕Coim( f ). Thus, we have dimV = dim Ker( f )+dim Coim( f ). This
shows that dimV = Nullity( f )+dim Coim( f ). ■

Moreover, we have the following properties for rank:
1. The rank of a matrix is invariant under elementary row and column operations.
2. Rank(A+B)≤ Rank(A)+Rank(B)
3. Rank(AB)≤ Rank(A) and Rank(AB)≤ Rank(B)
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3.11 Canonical Form of Linear Map
First, let f : V1→V2 be a linear map between finite-dimensional linear spaces over F. Recall that
Ker( f ) = f−1(0), Im( f ) = { f (v1) | v1 ∈ V1}, Coim( f ) = V1/Ker( f ) and Coker( f ) = V2/ Im( f ).
We have the following commutative diagram:

0 0

Ker( f ) Coker( f )

V1 V2

Coim( f ) Im( f )

0 0

s2

f

f

∃! f ′

s1

Here, each column is an exact sequence, and the square in the middle is commutative, as the
lower left triangle and upper right triangle are commutative.

Moreover, the f ′, the universal property for quotient map, is a linear equivalence. It is injective
due to the trivial Ker( f ′).

s1 and s2 are the right inverses or called sections.
With respect to the decomposition of V1 and V2 into subspaces, i.e., V1 = Im(s1)⊕Ker( f ) and

V2 = Im( f )⊕ Im(s2), the linear map f is decomposed as follows:

Im(s1)⊕Ker( f ) Im( f )⊕ Im(s2)

f =
[

f̃ 0
0 0

]

where f̃ : Im(s1)→ Im( f ) is a linear equivalence, as there are linear equivalences f ′ : Coim( f )→
Im( f ) and s1 : Coim( f )→ Im(s1). Then the graph below commutes:

Im(s1) Im( f )

Coim( f )

s1
f ′

Remark. The choice of s1 and s2 is not unique, so the decomposition of V1 and V2, and hence f , is not
unique.
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The matrix
[

f̃ 0
0 0

]
is the canonical form of the linear map. Just as the canonical form of a

matrix, it reveals the essential structure of the linear map. However, the rank of f̃ is unique, which
is equal to Rank( f ) = dim Im( f ).

Fr⊕Fn−r Fr⊕Fn−r

[
Ir 0
0 0

]

Moreover, from the diagram of two exact sequences, we can see that f can be decomposed into
two linear maps: f = ι ◦ f , where f : V1→ Coim( f ) is a surjective map and ι : Coim( f )→V2 is
an injective map. Note that the decomposition is not unique, as we can choose the path from V1 to
Coim( f ) then to V2.
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3.12 Free Vector Space
Let X be a set and δX = {δx | x ∈ X}. Here δx : X → F is the δ -function at x.

Proposition 3.16 δX is a linearly independent set of F[[X ]] = the linear space of F-valued functions
on X .

Proposition 3.17 Span(δX) = F[X ]

Thus, δX is a minimal spanning set for F[X ].

Proposition 3.18 There is a natural set isomorphism X → δX which maps x to δx.

Then we have an injective set map ι : X ≡ δX → F[X ] which maps x to δx. This is a set mapping
to a linear space.

Among all set maps from X to a linear space over F, the set map ι : X → F[X ] is universal in
the following sense:

X Z

F[X ]

∀φ

ι

∃!φ̃

For any set map φ : X → Z, there exists a unique linear map φ̃ : F[X ]→ Z such that φ̃ ◦ ι = φ .

Proof. Assume the existence of such φ̃ , then φ̃ ◦ ι(x) = φ(x) for all x ∈ X , i.e., φ̃(δx) = φ(x) for
all x ∈ X . As {δx | x ∈ X} is a minimal spanning set for F[X ], φ̃ must be the linear map such that
φ̃(δx) = φ(x), thus unique. Existence of φ̃ is also proved. ■

Via the natural identification of δX ≡ X (δx ≡ x), an element ∑αxδx ∈ F [X ], where the sum is
finite and αx ∈ F, is naturally identified with ∑αxx, which is called a formal linear combination of
elements in X . Hereafter, we always use this natural identification, so F[X ] is now defined as the
set of formal linear combinations of elements in the set X . Then ι : X → F[X ] is just the inclusion
map : x 7→ x.

The universal map is unique in the following sense: suppose that ι ′ : X → F[X ]′ is another
inclusion map, then there is a unique linear equivalence λ in the commutative triangle:

X

F[X ] F[X ]′

ι ι ′

λ

This can be seen from the following diagram:

X

F[X ]′ F[X ] F[X ]′ F[X ]

ι ′

ι ι ′
ι

µ

1

λ

1

µ
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λ exists because ι is universal, and µ exists because ι ′ is universal. λ µ = 1 because ι ′ is universal,
same for µλ = 1. Then λ is isomorphism.

The universal property implies an assignment of a linear map F[ f ] : F[X ]→ F[Y ] to any set
map f : X → Y . Indeed,

X Y

F[X ] F[Y ]

f

ι
ι f

ι

∃!F[ f ]

Moreover, F[1X ] = 1F[X ] or simply F[1] = 1 for all X , and F[ f g] = F[ f ]F[g] for all f : Y → Z
and g : X → Y .





4. Introduction to Category Theory

“In linear algebra, all the proofs should be
straight-forward. There is no trick. If you
think it’s very hard, there is something
wrong”

GUOWU MENG

4.1 Categories and Functors
The collection of set maps is denoted by Set and the collection of linear maps over F is denoted by
VecF. There is a diagram below:

Set

VecF

F[−]

where F[−] sends set map f : X → Y to a linear map F[ f ] : F[X ]→ F[Y ].
F[−] is an example of functors.
Monoid homomorphisms are another example of functors: in particular group homomorphisms

M1

M2

φ

An element a ∈M1 is viewed as an arrow, or morphism, that sends ∗ to ∗, i.e., a : ∗→ ∗. Then
ab is viewed as the composition of arrows:

∗ ∗ ∗b

ab

a
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Recall that a monoid M is a set, which is called a small collection of objects, together with a
binary operation, which is also called composition, on M with both the associtivity law and identity
law satisfied.

By relaxing the condition on binary operation, allowing the composition being partially defined,
we end up with the notion of small category.

Being partially defined means that the composition may not always be defined. For example,
take f : X → Y and g : W → Z, then g f is not defined. But for normal, f : X → Y and g : Y → Z,
then g f is defined. In monoid, as we may suggest there is only one element ∗, then the composition
is always defined.

An example of a small category: the collection of all matrices over F. We may consider any
m×n matrix as an arrow that sends n to m: A : n→ m. If we have a k×m matrix B that sends m
to k, then we have the composition BA : n→ k. Note that In : n→ n is the identity, which is not
unique, there can be Im and Ik. We have

n m

k

1n
A 1m

B

Note that A1n = A = 1mA and B1m = B.

Remark. The identity elements are not unique unlike the case of monoid.

The following shows the associativity law:

n m k lC

BC

A(BC)

(AB)C

B
AB

A

Hence, the set of all matrices form a small category.
Consider the set of all invertible matrices over F, it is also a small category, in fact, it is a

groupoid. Groupoid is defined as a small category such that every morphism is invertible.

Categories

Monoids Small Categories

Groups Groupoids

The graph above shows the relation, the arrows show the subsets relation. The arrow head is the
larger set and arrow tail is the subset.
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4.2 Small Categories
Definition 4.1 — Small Categories. A small category is a set C together with a subset C0 of C,
two surjective maps s, t : C → C0 and a composition map C ×(s,t) C → C that sends ( f ,g) to f g
which satisfies the identity law and associativity law.

Here C ×s,t C is defined as the pullback of the diagram below:

C ×s,t C C

C C0

p1

p2

⌜
t

s

where the set C ×s,t C = {(x,y) ∈ C×C | s(x) = t(y)}. Intuitively, the pullback is to filter out the

mappings that can do composition, such as f ,g ∈ C×(s,t) C where A B C
f g

.
The s and t are called the source map and target map respectively. We can picture the

composition graphically as follows:

∗ ∗ ∗ ∗
t( f ) s( f ) t(g) s(g)

f g ∗ ∗
t( f ) s(g)

f g

The left diagram is the equivalent to the right one.
We may draw the identity law this way:

∗ ∗
t( f ) s( f )

1t( f )
f ∗ ∗

t( f ) s( f )

f ∗ ∗
t( f ) s( f )

f
1s( f )

The three diagrams are equivalent.
We may draw the associativity law this way:

∗ ∗ ∗ ∗f g

f g

h

( f g)h

gh
f (gh)

■ Example 4.1 In the small category of matrices over F, we have

C = {Mm×n(F) | m,n ∈ N}
C0 = {In | n ∈ N} ≡ N

If A ∈ C is an m×n matrix, then s(A) = In ≡ n and t(A) = Im ≡ m. We can represent A as follows:

∗ ∗
m n

A

Note that (A,B) ∈ C×s,t C, where the composition of A and B defined as the matrix multiplication
AB, means for some positive integer m,n and k:

∗ ∗ ∗
m n k

A B

■
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Remark. Elements in C are morphisms or arrows, and elements in C0 are identity morphisms. A morphism
f is viewed as an arrow from s( f ) ∈C0 to t( f ) ∈C0, i.e., f : s( f )→ t( f ). An identity morphism is drawn
in the following way with X being called the object:

∗ ∗
X X

1X

In the last example, In is the identity morphism at n. So C0 is also called the set of objects. Then a
morphism f is viewed as an arrow from object X ≡ 1X = s( f ) to object Y ≡ 1Y = t( f ), i.e., f : X → Y .

So, normally, we denote a small category as C and its set of objects as C0.

Remark. The set of morphisms from object X to object Y is denoted by Mor(X ,Y ). In the last example,
Mor(m,n) =Mm×n(F), the set of all m×n matrices over F. Note that 1X ∈Mor(X ,X), so Mor(X ,X) ̸= /0
for all X ∈ C0.

Then C is the disjoint union of all Mor(X ,Y ) for all pairs of objects (X ,Y ):

C =
⊔

X ,Y∈C0

Mor(X ,Y )

Remark. The composition can be written as follows:

Mor(Y,Z)×Mor(X ,Y ) Mor(X ,Z)

(Z
f←−− Y,X

g←−− Y ) X
f g←−− Z

Then the following is the second definition of small category, which is also the normal definition
of a small category.

Definition 4.2 — Small Categories. A small category C is a collection of the following data:
1. A set of objects C0;
2. A set of morphisms Mor(X ,Y ) for each pair of objects (X ,Y );
3. A composition map Mor(Y,Z)×Mor(X ,Y )→Mor(X ,Z) that sends ( f ,g) to f g for each

triple of objects (X ,Y,Z);
4. An identity morphism 1X ∈Mor(X ,X) for each object X ;

Moreover, these data satisfies the following conditions:
(a) (Identity Law) For all f ∈Mor(X ,Y ), we have f 1X = f = 1Y f ;
(b) (Associativity Law) For all appropriate morphisms f ,g,h, we have ( f g)h = f (gh).

For a small category C, the set of objects is denoted by Ob(C) and the set of morphisms for any
pair of objects (X ,Y ) is denoted by Mor(X ,Y ), MorC(X ,Y ), HomC(X ,Y ) or simply C(X ,Y ).

If we allow Ob(C) and MorC(X ,Y ) for any pair of objects (X ,Y ) being a class, (a larger
collection than set), we end up with the definition of category.

We say a morphism is isomorphic or invertible if it has a two-sided inverse. A category such
that every morphism is isomorphic is called a groupoid.

■ Example 4.2 The collection of all sets and set maps, denoted by Set, is a category. ■

■ Example 4.3 The collection of all linear spaces over F and linear maps, denoted by VecF, is a
category. ■

■ Example 4.4 If C andD are two categories, then we have the product category C×D with objects
(X ,Y ) and morphisms ( f ,g), where X ∈Ob(C), Y ∈Ob(D), f ∈MorC(X ,X ′) and g∈MorD(Y,Y ′).
■
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■ Example 4.5 The category of set maps between finite sets, denoted by FinSet, is a subcategory
of Set. ■

■ Example 4.6 Fix an object X in a category C. Then the collection of all morphisms with source
X , denoted by C(X ,−), is a new category:

• Objects: all morphisms f : X → Y in C for all Y ∈ Ob(C);
• Morphisms: commutative triangles in C:

X

Y Y ′

f f ′

g

• The identity morphism at object f : X → Y is the commutative triangle in C:

X

Y Y

f f

1Y

■

■ Example 4.7 Let V be a subspace of the linear space W over F. Then we have a category:
• Objects: all morphisms f : W → Z in VecF such that f |V= 0;
• Morphisms: commutative triangles in VecF:

W

Z1 Z2

f1 f2

g

■

Definition 4.3 — Terminal Object and Initial Object. Let C be a category. An object
T ∈Ob(C) is called a terminal object if for all object X , there exists a unique morphism from X
to T , i.e., |C(X ,T )|= 1. An object I ∈ Ob(C) is called an initial object if for all object X , there
exists a unique morphism from I to X , i.e., |C(I,X)|= 1.

Corollary 4.1 A terminal object or an initial object is unique up to isomorphism.

■ Example 4.8 In the last example of category, the quotient map π : W →W/V is an initial object
and the zero map 0 : W → 0 is a terminal object. ■

■ Example 4.9 In Set, any singleton set is a terminal object, and the empty set is an initial object.
■

■ Example 4.10 In VecF, the zero vector space is both a terminal object and an initial object. ■
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4.3 Products and Coproducts
4.3.1 Products

Definition 4.4 — Products. Let C be a category and X ,Y ∈ Ob(C). The product of X and Y
is an object X ∏Y together with two morphisms πX : X ∏Y → X and πY : X ∏Y → Y such that
for any object Z and any two morphisms fX : Z → X and fY : Z → Y , there exists a unique
morphism f : Z→ X ∏Y such that the following diagram commutes:

Z

X X ∏Y Y

fX ∃! f
fY

πX πY

Remark. The product is unique up to isomorphism if it exists.

Corollary 4.2 Let C be a category and X ,Y ∈ Ob(C). Consider the following new category:

• Objects: all morphisms X Z Y
fX fY in C for all Z ∈ Ob(C);

• Morphisms: commutative diagrams in C:

Z

X Y

Z′

f

fX fY

f ′X f ′Y

Then the product of X and Y is a terminal object in this new category.

■ Example 4.11 In Set, the product of two sets X and Y is the Cartesian product X ×Y =
{(x,y) | x ∈ X ,y ∈ Y} with the projection maps πX(x,y) = x and πY (x,y) = y. Then with f (z) =
( fX(z), fY (z)) for all z ∈ Z, we have the following commutative diagram:

Z

X X×Y Y

fX ∃! f
fY

πX πY

■

■ Example 4.12 In VecF, the product of two linear spaces V1 and V2 over F is the direct product
V1×V2 = {(v1,v2) | v1 ∈V1,v2 ∈V2} with the projection maps πV1(v1,v2) = v1 and πV2(v1,v2) = v2.
Then with f (z) = ( fV1(z), fV2(z)) for all z ∈ Z, we have the following commutative diagram:

Z

V1 V1×V2 V2

fV1 ∃! f
fV2

πV1 πV2

■
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4.3.2 Coproducts
Definition 4.5 — Coproducts. Let C be a category and X ,Y ∈ Ob(C). The coproduct of X
and Y is an object X ∏Y together with two morphisms ιX : X → X ∏Y and ιY : Y → X ∏Y such
that for any object Z and any two morphisms fX : X → Z and fY : Y → Z, there exists a unique
morphism f : X ∏Y → Z such that the following diagram commutes:

X X ∏Y Y

Z

ιX

fX
∃! f

ιY

fY

Remark. The coproduct is unique up to isomorphism if it exists.

Corollary 4.3 Let C be a category and X ,Y ∈ Ob(C). The coproduct of X and Y is the initial
object in the new category:

• Objects: all morphisms X Z Y
fX fY in C for all Z ∈ Ob(C);

• Morphisms: commutative diagrams in C:

Z

X Y

Z′

fX

f ′X

fY

f ′Y

f

■ Example 4.13 In Set, the coproduct of two sets X and Y is the disjoint union X ⊔Y = {(x,1) |
x ∈ X}∪{(y,2) | y ∈ Y}. ■

■ Example 4.14 In VecF, the coproduct of two linear spaces V1 and V2 over F is the direct sum
V1⊕V2 = {(v1,v2) | v1 ∈V1,v2 ∈V2}. ■

4.3.3 Biproducts
In VecF, the product and coproduct are the same, i.e., V1×V2 ∼= V1⊕V2. Then we will say the
biproduct of V1 and V2 and denote it by V1⊕V2. The following diagram commutes:

V1×V2

V1 V2

V1⊕V2

πV1 πV2

ιV1 ιV2

Definition 4.6 — Biproducts. The biproduct of two objects X and Y in a category C is an object
X⊕Y that is both the product and coproduct of X and Y .



62 Chapter 4. Introduction to Category Theory

Remark. The biproduct exists if and only if the product and coproduct exist and are isomorphic, or if the
initial object and the terminal object exist and are isomorphic.

■ Example 4.15 In VecF, the zero vector space is both a terminal object and an initial object, so
the biproduct exists. ■

However, in Set, the empty set is an initial object but the terminal object is any singleton set,
so the biproduct does not exist.

4.3.4 Products and Coproducts of a Family of Objects
In general, we may have the product or coproduct of a family of objects.

Let C be a category and {Xα}α∈I be a collection of objects in C indexed by a set I, called the
indexing set. The product of {Xα}α∈I is the terminal object in the new category:

• Objects: all collections of morphisms { fα : Z→ Xα}α∈I in C for all Z ∈ Ob(C);
• Morphisms: for all α ∈ I, commutative diagrams in C:

Xα

Z Z′

fα

f

f ′α

The coproduct of {Xα}α∈I is the initial object in the new category:
• Objects: all collections of morphisms { fα : Xα → Z}α∈I in C for all Z ∈ Ob(C);
• Morphisms: for all α ∈ I, commutative diagrams in C:

Z

Xα Z′

fαf ′α

f

Then the product and coproduct have the following universal properties respectively:

Xα Z

∏Xα

∃! f

∀ fα

πα

Xα Z

∏Xα

ια

∀ fα

∃! f

The elements in the product of a family of objects in VecF can be written as ordered tuples:
(vα)α∈I . The product can be defined as follows:

∏
α∈I

Vα = {(vα)α∈I | vα ∈Vα}

Then the coproduct can be defined as follows:⊕
α∈I

Vα = {(vα) ∈∏
α∈I

Vα | vα is finitely supported} ⊆∏
α∈I

Vα



4.3 Products and Coproducts 63

Remark. In general, the product is not equal to the coproduct. They are equal if and only if the indexing
set I is finite.

Consider the following diagram:

Vα1 Vα2 Vα3 Vα4 · · ·

s1(α1)

s1(α2) s1(α3)

s1(α4)

s2(α3)

0α1 0α2 0α3 0α4

⋃
α∈I

Vα

s1, s2

I
α1 α2 α3 α4

Remark. The right sections s1 and s2 are two elements in the product ∏Vα . Note that s2 is likely to be
“finitely supported” since it is zero in almost all components shown in the diagram. However, if I is an
infinite set, then s2 may not be finitely supported since there may be infinitely many non-zero components
not shown in the diagram. So s2 may not be an element in the coproduct

⊕
Vα if I is an infinite set, but

most likely to be.

So the product ∏Vα contains all possible sections s : I →
⋃

Vα , so it is called the space of
sections. The coproduct

⊕
Vα contains all finitely supported sections, so it is called the space of

sections with finite support. The elements in the coproduct
⊕

Vα written as ordered tuples (vα)α∈I

can also be written as finite sums ∑α∈I vα since only finitely many vα are non-zero.
Actually, the product and coproduct are the generalisation of the polynomial ring and the formal

power series ring respectively. We can consider the following diagrams:

s(α1)

s(α2)

s(α3)

s(α4)

F F FF F · · ·

F[S]

s

S
α1 α2 α3 α4

F

s(α1)

s(α2)

s(α3)

s(α4)

The left shows the diagram in generalised version, but it can be squeezed to the right since all
fibres are the same. So we can consider the set map as s : S→ F as shown on the right.
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4.4 Functors
Definition 4.7 — Functors. Let C and D be two categories. A functor F : C →D consists of
the following data:

• A map F : Ob(C)→ Ob(D);
• A map F : MorC(X ,Y )→MorD(F(X),F(Y )) for all X ,Y ∈ Ob(C);

such that the following conditions are satisfied:
(a) For all X ∈ Ob(C), we have F(1X) = 1F(X);
(b) For all appropriate morphisms f ,g in C, we have F( f g) = F( f )F(g).

■ Example 4.16 There are two functors from Set to VecF:

Set VecF
F[−]

|−|

where F[−] sends set X to the free vector space F[X ] generated by X , and a set map f : X → Y to
the linear map F[ f ] : F[X ]→ F[Y ] induced by f . The functor |− | sends a vector space V to its
underlying set |V |, and a linear map φ : V →W to the set map |φ | : |V | → |W | induced by φ .

The functor F[−] is called the free functor, specifically the free vector space functor. The
functor |− | is called the underlying functor or forgetful functor. ■

For some set X and any vector space V , we can consider the following diagram:

X V

F[X ]

∀φ

ι
∃!φ

This is called the universal property of free vector space over a set. Here ι : X → F[X ] is the
inclusion map, φ : X →V is any set map, and φ : F[X ]→V is the unique linear map induced by
φ .

Remark. The universal property of free vector space over a set can be rephrased as follows: for any set
X and any vector space V , there is a natural identification:

Set(X , |V |)≡ VecF(F[X ],V )

where Set(X , |V |) is the set of all set maps from X to the underlying set of V , and VecF(F[X ],V ) is the
set of all linear maps from the free vector space F[X ] to V .

If we consider φ : X → |V | as an element in Set(X , |V |), then the corresponding element in
VecF(F[X ],V ) is the unique linear map φ : F[X ]→V induced by φ .

Note that ι ≡ 1F[X ] is the identity element in VecF(F[X ],F[X ]), so it corresponds to an element in
Set(X , |F[X ]|), which is exactly the inclusion map ι : X → |F[X ]|.

Definition 4.8 — Adjoint Functors. Let C and D be two categories. A functor F : C → D is
called a left adjoint of a functor G : D→ C, and G is called a right adjoint of F , if there is a
natural identification:

D(F(X),Y )≡ C(X ,G(Y ))

for all X ∈ Ob(C) and Y ∈ Ob(D).

■ Example 4.17 The free functor F[−] : Set→ VecF is a left adjoint of the underlying functor
|− | : VecF→ Set. This is exactly the universal property of free vector space over a set. ■
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Definition 4.9 — Endofunctors. An endofunctor is a functor F : C → C that maps a category to
itself.

■ Example 4.18 Let X be a set. Then we have an adjoint pair of functors:

Set Set
−×X

Set(X ,−)

On the left is the endofunctor −×X and on the right is the endofunctor Set(X ,−).

Set Set

Y Y ×X

Z Z×X

−×X

f f×1X

Set Set

Set(X ,Y ) Y

Set(X ,Z) Z

Set(X ,−)

Set(X , f ) f

Consider an element g ∈ Set(X ,Y ), which is a set map g : X → Y . Then the corresponding
element in Set(X ,Z) is Set(X , f )(g) = f g : X → Z.

Then we can write the natural identification as follows:

Set(Y ×X ,Z)≡ Set(Y,Set(X ,Z))

for all sets Y and Z. This means that a set map F : Y ×X → Z corresponds to a set map F^ : Y →
Set(X ,Z) such that a y ∈Y is mapped to a set map F^(y) : X → Z defined by F^(y)(x) = F(y,x) for
all x ∈ X . ■

Consider the following two diagrams:

X1 X1×X2 X2

F[X1] F[X1×X2] F[X2]

≡F[X1]⊗F[X2]

F[−]

X1 X1⊔X2 X2

F[X1] F[X1⊔X2] F[X2]

≡F[X1]⊕F[X2]

F[−]

The left diagram shows that the free functor sends the product of two sets to the tensor product
of two vector spaces. The right diagram shows that the free functor sends the coproduct of
two sets to the direct sum of two vector spaces, i.e., the coproduct of two vector spaces. Note
that the tensor product of two vector spaces is not the product of two vector spaces, as the
dimension of the tensor product is dim (V1⊗V2) = dim (V1) ·dim (V2) while the dimension of the
product is dim (V1⊕V2) = dim (V1)+dim (V2). There is a unique but not isomorphic linear map
φ : V1⊗V2→V1⊕V2.

Remark. The left adjoint functor preserves coproducts, and the right adjoint functor preserves products.
This is the consequences of the adjoint functor theorem.

Similarly, we have the following natural identifications:

VecF(X⊗Y,Z)≡ VecF(Y,VecF(X ,Z))

Note that VecF(X ,Z) is a vector space over F, as VecF ≡ HomF. Then, we have the following
adjoint pair of endofunctors on VecF:

VecF VecF
−⊗X

HomF(X ,−)
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4.5 Dual Spaces and Dual Bases
Let V be a finite-dimensional linear space over F. The dual space of V is the vector space
V ∗ = HomF(V,F), the set of all linear functionals from V to F, or covectors.

Proposition 4.1 Let V be a finite-dimensional linear space over F. Then dim (V ∗) = dim (V ). So,
V ∗ is isomorphic to V but not naturally isomorphic to V .

Proof. Without the loss of generality, we may assume dimV = n and V = Fn. Then V ∗ =
HomF(Fn,F) ≡ M1×n(F), the linear space of row matrices with n entries. The linear space is
the span of n standard basis row matrices: ê1, ê2, · · · , ên. So dim (V ∗) = n = dim (V ). We can say
V ∗ ∼=V . ■

We have a map φs : Fn→ (Fn)∗ ⊃ S = {ê1, ê2, · · · , ên} defined by φs(⃗x) = ∑
n
i=1 xiêi. This is a

vector space isomorphism but not a natural isomorphism, as it depends on the choice of S.

Definition 4.10 — Bases. A basis of a linear space V over F is the minimal spanning set of V
with an order. The set of all bases of V is denoted by BV .

Proposition 4.2 BV and BV ∗ are naturally isomorphic in Set, i.e., the following natural identifica-
tion holds:

BV ≡ BV ∗

v = (⃗v1, v⃗2, · · · , v⃗n)≡ (v̂1, v̂2, · · · , v̂n) = v∗

where v̂i ∈V ∗ is defined by v̂i(⃗v j) = δ i
j for all 1≤ i, j ≤ n.

Proof. Consider the following commutative diagram:

V

Fn F

[−]V
v̂i

πi

The projection map πi is a linear functional in Fn that sends x⃗ = (x1,x2, · · · ,xn) to xi. It is actually
êi. Note that [−]V : V → Fn is a coordinate map defined by a basis v = (⃗v1, v⃗2, · · · , v⃗n) ∈ BV such
that [⃗v j]V = e⃗ j for all 1≤ j ≤ n. It is a unique linear map which identify v⃗i with e⃗i. It can be done
by trivialisation of V with respect to the basis v. Then we define v̂i(⃗v j) = δ i

j for all 1≤ i, j ≤ n.
Then we have to consider whether (v̂1, v̂2, · · · , v̂n) is a basis of V ∗. As dimV ∗ = n, we only

need to show that (v̂1, v̂2, · · · , v̂n) is a spanning set of V ∗ or linearly independent. We have to check
whether the equation ∑

n
i=1 xiv̂i = 0 for some xi ∈ F has only the trivial solution. Applying it to v⃗ j

for all 1 ≤ j ≤ n, we have 0 = ∑
n
i=1 xiv̂i(⃗v j) = ∑

n
i=1 xiδ

i
j = x j. So x j = 0 for all 1 ≤ j ≤ n. This

means that (v̂1, v̂2, · · · , v̂n) is linearly independent, and hence it is a basis of V ∗. We call it the dual
basis of the basis v⃗ = (v1,v2, · · · ,vn) and denote it by v⃗∗ = (v̂1, v̂2, · · · , v̂n).

Then we have to show that there is a unique basis in V ∗ that satisfies v̂i(⃗v j) = δ i
j. Let V = Fn

and v = (⃗v1, v⃗2, · · · , v⃗n) be a basis of V . Then A = [⃗v1 v⃗2 · · · v⃗n] is an invertible matrix. Let
(α1,α2, · · · ,αn) be a basis of V ∗. Then we have the following equations:

[δ i
j] =

 | α1 |

...

| αn |


 | |

v⃗1 · · · v⃗n

| |

= In

Then (α1,α2, · · · ,αn) = A−1. So the dual basis is unique.
Finally, we have the natural identification: ■
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Remark. V ∼=V ∗ but BV ≡BV ∗ . The isomorphism V ∼=V ∗ depends on the choice of a basis in BV , while
the natural isomorphism BV ≡ BV ∗ does not depend on any choice.

■ Example 4.19 Consider the following open subset U of R2:

x

y

p

U
u⃗

u⃗

Consider the cotangent vector d fp at point p for some smooth function f : U → R. It is a linear
functional d fp : TpU → R defined by d fp(⃗u) = ∇ f (p) · u⃗ for all u⃗ ∈ TpU . Here TpU is the tangent
space of U at point p, which is a vector space over R. Note that both u⃗ and ∇ f (p) are depending
on the choice of a coordinate system. However, d fp is independent of any choice of coordinate
system. In normal calculus, d fp is called the first partial derivative of f at point p, and normally
we write it as ∂ f

∂x (p) and ∂ f
∂y (p). ■

The dual functor is not naturally isomorphic to the identity functor on VecF, as (−)∗ is a con-
travariant functor, while the identity is a contravariant functor, so there is no natural transformation
from idVecF to (−)∗.

VecF VecF

Y Y

Z Z

idVecF

f f

VecF VecF

Y Y ∗

Z Z∗

(−)∗

f f ∗
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4.6 Double Dual Spaces and Doubles
Consider the endofunctors on VecF:

VecF VecF
(−)∗∗

idVecF

There is a natural transformation from idVecF to (−)∗∗ defined by the natural identification: V ≡V ∗∗.
As idVecF and (−)∗∗ are covariant functors, there is a natural transformation between them.

VecF VecF

Y Y

Z Z

idVecF

f f

VecF VecF

Y Y ∗∗

Z Z∗∗

(−)∗∗

f f ∗∗

Let ⟨−,−⟩ : V ∗×V → F be the natural pairing defined by ⟨α,u⟩= α(u) where α : V → F that
sends u→ αu. It is the pairing of a covector with a vector and the map is bilinear.

Definition 4.11 — Bilinear Maps. A map B : U×V →W is called bilinear if for all u ∈U , the
map B(u,−) : V →W is linear, and for all v ∈V , the map B(−,v) : U →W is linear.

We have the following natural identification:

V ∗×V F V ∗ HomF(V,F)

V ×V ∗ F V HomF(V ∗,F)

V ∗×V

⟨−,−⟩

≡

≡ 1V∗

≡

≡ ιV

⟨−,−⟩

where ιV : V →V ∗∗ is defined by ιV (u) = ǔ such that ǔ(α) = α(u). Then V ∗∗ =HomF(V ∗,F)≡V .

Definition 4.12 — Doubles. Let V be a linear space over F. The double of V , denoted by D(V ),
is defined as follows:

D(V ) =V ⊕V ∗

As V is naturally isomorphic to V ∗∗, we have the following natural identification:

D(V ) =V ⊕V ∗ ≡V ∗⊕V ∗∗ = D(V ∗)

The matrix representation of the isomorphism between D(V ) and D(V ∗) is[
0 −ιV

1 0

]
where ιV : V →V ∗∗ is the natural isomorphism defined above. The negative sign is used to make
the isomorphism a symplectic isomorphism, which will be discussed in the later chapters.
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4.7 Natural Transformation and Natural Equivalences
Definition 4.13 — Natural Transformations. Let F,G : C → D be two functors. A natural
transformation η : F → G is a collection of morphisms ηX : F(X)→ G(X) in D for all objects
X in C, such that for all morphisms f : X → Y in C, the following diagram commutes:

F(X) F(Y )

G(X) G(Y )

F( f )

ηX ηY

G( f )

Definition 4.14 — Natural Equivalences. A natural equivalence from functor F to functor
G is a natural transformation η : F → G which has a two-sided inverse natural transformation
η−1 : G→ F such that ηη−1 = 1G and η−1η = 1F . In this case, we say that F and G are
naturally equivalent, denoted by F ≡ G.

■ Example 4.20 Consider the endofunctors on VecF:

VecF VecF
(−)∗∗

idVecF

We have the following natural transformation:

(−)∗∗ V1 V2 V ∗∗1 V ∗∗2

idVecF V1 V2 V1 V2

≡

f f ∗∗

ηV1 ∼= ηV2∼=

f f

Then we have the natural equivalence: (−)∗∗ ≡ idVecF . ■

■ Example 4.21 We have the following natural equivalence:

MapBL(U×V,−)≡ HomF(U,HomF(V,−))

where both are endofunctors on VecF. For any linear space Z over F, we have the natural isomor-
phism:

^Z : MapBL(U×V,Z)→ HomF(U,HomF(V,Z))

■

■ Example 4.22 We have the following natural equivalence:

F⊗−≡ idVecF ≡−⊗F≡ HomF(F,−)≡ (−)∗∗

■
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4.8 Exact Functors
Definition 4.15 — Covariant Exact Functors. Let C and D be two abelian categories. A
covariant functor F : C →D is called:

• left exact if whenever 0→ A→ B→C→ 0 is exact then 0→ F(A)→ F(B)→ F(C) is
exact in D, i.e., it preserves all finite limits;

• right exact if whenever 0→ A→ B→C→ 0 is exact then F(A)→ F(B)→ F(C)→ 0 is
exact in D, i.e., it preserves all finite colimits;

• exact if it is both left exact and right exact.

Definition 4.16 — Contravariant Exact Functors. Let C and D be two abelian categories. A
contravariant functor G : C →D, it is called:

• contravariant left exact if whenever 0→ A→ B→ C→ 0 is exact then 0→ G(C)→
G(B)→ G(A) is exact in D;

• contravariant right exact if whenever 0→ A→ B→C→ 0 is exact then G(C)→G(B)→
G(A)→ 0 is exact in D;

• contravariant exact if it is both contravariant left exact and contravariant right exact.

■ Example 4.23 The dual functor (−)∗ : VecF→ VecF is a contravariant left exact functor, as it
sends a short exact sequence 0→U →V →W → 0 to a left exact sequence 0→W ∗→V ∗→U∗.
Moreover, U →V →W is exact if and only if W ∗→V ∗→U∗ is exact. Also, the map U →V is
injective if and only if the map V ∗→U∗ is surjective; the map U→V is surjective if and only if the
map V ∗→U∗ is injective. This can be shown by considering the following two exact sequences:
0→U →V and U →V → 0. ■

In general, the hom-set functor HomC(X ,−) : C → Set is a covariant left exact functor for any
object X in an abelian category C, and the hom-set functor HomC(−,X) : C → Set is a contravariant
left exact functor for any object X in an abelian category C.

■ Example 4.24 The tensor product functor −⊗V is a covariant right exact functor, as it sends a
short exact sequence 0→U→V →W → 0 to a right exact sequence U⊗V →V⊗V →W⊗V → 0.
■

Note that the tensor product functor is a left adjoint functor, and left adjoint functors are right
exact in general, while the VecF(V,−) functor is a right adjoint functor, and right adjoint functors
are left exact in general.



5. Tensor Algebra

In high level universities, students will
blame themselves if they don’t understand
the content, but in low level universities,
students will blame the professors.

GUOWU MENG

5.1 Tensor Products
Let U and V be two fixed linear spaces over F and Z be any linear space over F. Consider the set of
all bilinear maps from U×V to Z, denoted by MapBL(U×V,Z). It is a vector space over F as it is
a subset of Map(U×V,Z), the set of all maps from U×V to Z.

By the universal property of tensor product, we have a natural identification:

MapBL(U×V,Z)≡ HomF(U⊗V,Z)

Note that both are naturally identical to HomF(U,HomF(V,Z)). Also note that Hom(−⊗V,Z)≡
Hom(−,Hom(V,Z)) is a tensor-hom adjunction.

The natural identification is the universal property of tensor product. Consider the following
commutative diagram:

U×V Z

U⊗V

∀φ

ι
∃!φ

Note that the map ι and φ are bilinear maps, and the existence of the unique linear map φ follows
from the universal property of the tensor product. We can also consider it as the initial object in a
new category:

• Objects: all bilinear maps φ : U×V → Z for all Z ∈ Ob(VecF);
• Morphisms: commutative diagrams in VecF:
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Z

U×V

Z′

f

φ

φ ′

The existence of tensor product follows from the existence of free vector space over a set and
the existence of quotient spaces.

Consider the following commutative diagram:

U×V

IU,V F[U×V ] Z

F[U×V ]/IU,V

∀φ
ι ′

∃!φ ′

π ∃!φ

ι

where IU,V is the subspace of F[U×V ] generated by the following elements for all u,u1,u2 ∈U ,
v,v1,v2 ∈V and α,β ∈ F:

• (αu1 +βu2,v)−α(u1,v)−β (u2,v);
• (u,αv1 +βv2)−α(u,v1)−β (u,v2);

Why the construction of IU,V is like this? This is because we want ι to be a bilinear map. Then
ι(αu1 +βu2,v) = αι(u1,v)+βι(u2,v) and ι(u,αv1 +βv2) = αι(u,v1)+βι(u,v2). This means
that the elements in IU,V should be mapped to 0 by ι . So we have to quotient F[U×V ] by IU,V to
make ι a bilinear map.

We define U⊗V = F[U×V ]/IU,V and this shows the existence of tensor product.

Remark. The inclusion map ι : U ×V →U ⊗V is ‘surjective’ in the sense that the image of ι spans
U ⊗V , i.e. Span(Im(ι)) =U ⊗V . To know φ , it suffices to know φ(u⊗ v) = φ(u,v) for all u ∈U and
v ∈V .

We can talk about the tensor product of k linear spaces with k ≥ 2. Moreover, the tensor
product is associative and commutative up to isomorphism, i.e., V1⊗V2⊗V3 ∼= (V1⊗V2)⊗V3 ∼=
V1⊗ (V2⊗V3) and V1⊗V2 ∼=V2⊗V1. Both of them are natural isomorphisms.

V1×V2×V3 V1⊗V2⊗V3

(V1⊗V2)×V3 (V1⊗V2)⊗V3

≡

V1×V2 V1⊗V2

V2×V1 V2⊗V1

≡

We have a natural equivalence:

Hom(U,V ⊗W )≡ Hom(U,V )⊗W

Then we can prove that Hom(V1,V2) ≡ V ∗1 ⊗V2 and (V1⊗V2)
∗ ≡ V ∗1 ⊗V ∗2 . Also, we have the

following equation, by considering V1⊗V2 ≡ Hom(V ∗1 ,V2):

dim (V ⊗W ) = dim (V ) ·dim (W )
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If e is a minimal spanning set of V1 and f is a minimal spanning set of V2, then e⊗ f is a
minimal spanning set of V1⊗V2. Moreover, we have End(V )≡ (End(V ))∗ and the identity map 1V

corresponds to the trace map tr : End(V )→ F under this identification.
We also have the distribution of tensor product over direct sum: V1⊗ (V2⊕V3)≡ (V1⊗V2)⊕

(V1⊗V3). Moreover, Hom(V1,V2⊕V3) ≡ Hom(V1,V2)⊕Hom(V1,V3) and Hom(V1⊕V2,V3) ≡
Hom(V1,V3)×Hom(V2,V3).
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5.2 Algebras
Definition 5.1 — Algebras. An algebra over a field F is a linear space A over F equipped with
a bilinear product map A×A→ A, or equivalently a linear map A⊗A→ A.

■ Example 5.1 The set of all polynomials in t with coefficients in F, denoted F[t], is an algebra
over F. As F[t]×F[t]→ F[t] defined by ( f ,g) 7→ f g is a bilinear map. Moreover, F[t] has a
multiplicative identity 1 ∈ F[t], f g = g f for all f ,g ∈ F[t], and ( f g)h = f (gh) for all f ,g,h ∈ F[t].
So F[t] is a unital commutative associative algebra over F. ■

■ Example 5.2 The set of all square matrices with order n over F, denoted by Mn×n(F), is an algebra
over F. As Mn×n(F)×Mn×n(F)→Mn×n(F) defined by (A,B) 7→ AB is a bilinear map. Moreover,
Mn×n(F) has a multiplicative identity In ∈Mn×n(F), (AB)C = A(BC) for all A,B,C ∈Mn×n(F).
However, in general AB ̸= BA for some A,B ∈Mn×n(F). So Mn×n(F) is a unital associative algebra
but it is a non-commutative algebra over F. ■

■ Example 5.3 The 3-dimensional Euclidean space R3 with the cross product × : R3×R3→ R3

is an algebra over R. As the cross product is bilinear. However, it does not have a multiplicative
identity, not associative and not commutative. So R3 with the cross product is a non-unital non-
associative non-commutative algebra over R. ■

Remark. (R3,×) is an example of a simple real lie algebra. It is the lie algebra of the lie group SO(3),
the special orthogonal group in dimension 3, i.e., the 3-dimensional rotations. (R3,×) is denoted by
so(3). Also, it is the lie algebra of the infinitesimal symmetries of a pointed 3-dimensional Euclidean
space.

Definition 5.2 — Lie Algebras. An algebra is g over a field F is called a lie algebra if the lie
bracket or lie product [−,−] : g×g→ g satisfies the following two conditions:

• Skew-symmetry: [x,x] = 0 for all x ∈ g, i.e., [x,y] =−[y,x] for all x,y ∈ g if char(F) ̸= 2;
• Jacobi Identity: [x, [y,z]]+ [y, [z,x]]+ [z, [x,y]] = 0 for all x,y,z ∈ g.

Definition 5.3 — Graded Linear Space. A linear space V• over F is called a Z≥0-graded
linear space or graded vector space if it is a direct sum of linear subspaces Vn for all n ∈ Z≥0:

V• =
∞⊕

n=0

Vn

The elements in Vn are called homogeneous elements of degree n. If v ∈Vn is a homogeneous
element, we write deg(v) = n.

Definition 5.4 — Graded Linear Maps. A linear map φ : V• →W• is called a graded linear
map with graded degree k ≥ 0 if φ(Vn)⊆Wn+k for all n ∈ Z≥0.
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5.3 Tensor Algebras
Let V be a finite-dimensional linear space over F. We define a new notation:

V⊗k =V ⊗V ⊗·· ·⊗V︸ ︷︷ ︸
k times

for all k ≥ 0. Note that V⊗0 = F. Also, dim (V⊗k) = (dimV )k for all k ≥ 0.
We define the tensor algebra of V over F, denoted by T •V , as follows:

T •V =
∞⊕

k=0

V⊗k = F⊕V ⊕ (V ⊗V )⊕ (V ⊗V ⊗V )⊕·· ·

The tensor algebra T •V is an algebra over F with the bilinear product map defined by the tensor
product:

⊗ : T •V ×T •V →T •V

which sends (∑n un,∑m vm) to ∑n,m(un⊗ vm).

Remark. As the algebra product is bilinear, it suffices to know the product of two homogeneous elements,
i.e., V⊗n×V⊗m→T •V for all n,m≥ 0. So T •V is a Z≥0-graded algebra over F. As the tensor algebra
is bi-additive, we have the following equality:

∑
n

un⊗∑
m

vm = ∑
n
(un⊗∑

m
vm) = ∑

n
∑
m
(un⊗ vm) = ∑

n,m
(un⊗ vm)

Then to define the bilinear product above, we have to define the tensor product of two homoge-
neous elements:

V⊗n×V⊗m T •V

V⊗(n+m)

V⊗n⊗V⊗m

We have to prove the existence of the bilinear map V⊗n×V⊗m→V⊗(n+m) for all n,m≥ 0. We
can prove it by the following commutative diagram:

V⊗n×V⊗m

n times︷ ︸︸ ︷
V ⊗·· ·⊗V ⊗

m times︷ ︸︸ ︷
V ⊗·· ·⊗V

(V ×·· ·×V )︸ ︷︷ ︸
n times

×(V ×·· ·×V )︸ ︷︷ ︸
m times

V ×·· ·×V︸ ︷︷ ︸
n+m times

V ⊗·· ·⊗V︸ ︷︷ ︸
n+m times

φ
∃!φ

The proof used a lot of universal properties of tensor products. Note that the map φ is a multilinear
map and φ is a linear equivalence.

So we have proved the existence of the bilinear product map ⊗ : T •V ×T •V → T •V . Then
T •V is an algebra over F.
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Remark. The tensor algebra (T •V,⊗) is a graded unital associative algebra over F. It is graded, as it
is degree additive, i.e., V⊗n×V⊗m→V⊗(n+m) for all n,m≥ 0. It is unital, as V⊗0−F×V⊗m→V⊗m

and the reverse. The multiplicative identity is 1 ∈ F. It is associative, as (u⊗ v)⊗w = u⊗ (v⊗w) for all
u,v,w ∈V and the associativity can be extended to all homogeneous elements by bi-additivity. However,
in general it is not commutative, as u⊗ v ̸= v⊗u for some u,v ∈V .

There is a universal property of tensor algebras. Consider the following commutative diagram:

V A•

T •V

∀φ

ι

∃!φ

Note that V = V⊗1 = 0⊕V ⊕ 0⊕·· · ⊆ T •V and ι is the inclusion map. Here A• is any graded
unital associative algebra over F and φ : V → A• is a graded linear map with graded degree 0. Then
there exists a unique graded algebra homomorphism with graded degree 0 φ : T •V → A• such that
φ ◦ ι = φ . This shows the universal property of tensor algebras. More specifically, the map φ is a
map from V to the degree 1 part of A•, i.e., φ : V → A1, then with an inclusion map.

The tensor algebra construction is actually a functor from VecF to the category of graded unital
associative algebras over F, denoted by Z≥0−AlgF:

VecF Z≥0−AlgF

V T •V

W T •W

T •

f T • f

where T • f : T •V →T •W is the unique graded algebra homomorphism with graded degree 0 such
that T • f ◦ ιV = ιW ◦ f . Here ιV : V →T •V and ιW : W →T •W are the inclusion maps.

The existence of the functor T • follows from the universal property of tensor algebras. It is
called the free graded algebra functor, normally the “unital” and “associative” will be omitted.
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5.4 Quotient Algebras
In this section, we will discuss three quotient algebras associated with a vector space V : the
symmetric algebra, exterior algebra, and universal enveloping algebra.

Before that we need to introduce the concept of ideals in algebras.

Definition 5.5 — Ideals of Algebras. An ideal of an algebra A over a field F is a non-empty
subset I of A which is closed under linear combinations and algebra multiplications by elements
in A. That is, for all x,y ∈ I, α,β ∈ F and a ∈ A, we have:

• αx+βy ∈ I;
• ax ∈ I and xa ∈ I.

Simply speaking, an ideal is a generalisation of a rule to an algebra.
The following is an example of an ideal in a ring, which is an example of ideal in a more general

concept.

■ Example 5.4 Consider the ring of integers, Z. The set of all n-multiples, denoted by nZ, is an
ideal of Z for all n ∈ Z. As it is closed under addition and multiplication by any integer. ■

5.4.1 Symmetric Algebras
The symmetric algebra of a vector space V over a field F, denoted by S•V , is defined as the
quotient algebra of the tensor algebra T •V by the ideal of T •V generated by elements of the form
u⊗ v− v⊗u for all u,v ∈V :

S•V = T •V/IS• = T •V/⟨u⊗ v− v⊗u | u,v ∈V ⟩

The IS• is called the symmetrising ideal of T •V . It is actually the ideal completion of the relation
u⊗ v = v⊗u for all u,v ∈V . We use ⟨−⟩ to denote the ideal generated by a set.

Then the elements in S•V are equivalence classes of elements in T •V . We have uv ∈ S•V as
the equivalence class of u⊗ v ∈ T •V denoted by [u⊗ v]. Note that uv = [u⊗ v] = [v⊗u] = vu in
S•V , as [u⊗ v− v⊗u] = 0. So the product in S•V is commutative.

Remark. Symmetric algebra is still a graded algebra. As the ideal IS• is a graded ideal, i.e., IS• =⊕
∞
k=0(IS• ∩V⊗k).

Similar to tensor algebras, we have the following expression:

S•V =
∞⊕

k=0

SkV

where SkV is the k-th symmetric power of V .
We also have the following universal property of symmetric algebras. Consider the following

commutative diagram:

V A•

T •V

S•V

∀φ

ι

π

∃!φ

Here A• is any graded unital commutative associative algebra over F.
Similarly, S•V is the free graded commutative algebra functor from VecF to the category of

graded unital commutative associative algebras over F, denoted by Z≥0−CAlgF:



78 Chapter 5. Tensor Algebra

5.4.2 Exterior Algebras
The exterior algebra of a vector space V over a field F, denoted by

∧•V , is defined as the quotient
algebra of the tensor algebra T •V by the ideal of T •V generated by elements of the form v⊗ v for
all v ∈V :∧•

V = T •V/I∧• = T •V/⟨v⊗ v | v ∈V ⟩= T •V/⟨v⊗w+w⊗ v | v,w ∈V ⟩

The I∧• is called the alternating ideal of T •V . It is actually the ideal completion of the relation
v⊗ v = 0 for all v ∈ V , or equivalently v⊗w = −w⊗ v for all v,w ∈ V . Sometimes the exterior
algebra is also called the skew-symmetric algebra. Note that the characteristic of the field F should
not be 2, i.e., char(F) ̸= 2, otherwise v⊗w =−w⊗ v implies that v⊗w = w⊗ v.

Then the product in
∧•V is called the exterior product or wedge product, denoted by ∧. We have

u∧ v =−v∧u in
∧•V for all u,v ∈V . So the product in

∧•V is skew-commutative.

Remark. Exterior algebra is still a graded algebra. As the ideal I∧• is a graded ideal, i.e., I∧• =⊕
∞
k=0(I∧• ∩V⊗k).

Then we have the following expression:

∧•
V =

∞⊕
k=0

∧k
V

where
∧kV is the k-th exterior power of V .

We also have the following universal property of exterior algebras. Consider the following
commutative diagram:

V A•

T •V

∧•V

∀φ

ι

π

∃!φ

Here A• is any graded unital associative skew-commutative algebra over F.
Similarly,

∧•V is the free graded skew-commutative algebra functor from VecF to the category
of graded unital associative skew-commutative algebras over F, denoted by Z≥0−SAlgF:

5.4.3 Universal Enveloping Algebras
Let g be a lie algebra over a field F. The universal enveloping algebra of g over F, denoted by
Ug, is defined as the quotient algebra of the tensor algebra T •g by the ideal of T •g generated by
elements of the form x⊗ y− y⊗ x− [x,y] for all x,y ∈ g:

Ug= T •g/IU = T •g/⟨x⊗ y− y⊗ x− [x,y] | x,y ∈ g⟩

The IU is called the lie ideal of T •g. It is actually the ideal completion of the relation xy−yx = [x,y]
for all x,y ∈ g.

Remark. However, the universal enveloping algebra is not a graded algebra. As the ideal IU is not a
graded ideal. The x⊗ y− y⊗ x is in g⊗2 but [x,y] is in g⊗1.
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5.5 Hilbert-Poincaré Series
Let V• =

⊕
i≥0Vi be a Z≥0-graded finite-dimensional linear space over a field F. The Hilbert-

Poincaré series of V• is defined as the following formal power series:

PV•(t) =
∞

∑
i=0

dim (Vi) t i

■ Example 5.5 The Hilbert-Poincaré series of the tensor algebra T •V is:

PT •V (t) =
∞

∑
i=0

dim (V⊗i) t i =
∞

∑
i=0

(dimV )i t i =
1

1−dimV t

■

■ Example 5.6 The Hilbert-Poincaré series of the symmetric algebra S•V is:

PS•V (t) =
∞

∑
i=0

dim (S iV ) t i =
∞

∑
i=0

(
dimV + i−1

i

)
t i =

1
(1− t)dimV

■

■ Example 5.7 The Hilbert-Poincaré series of the exterior algebra
∧•V is:

P∧•V (t) =
∞

∑
i=0

dim (
∧i

V ) t i =
∞

∑
i=0

(
dimV

i

)
t i = (1+ t)dimV

■

As the Hilbert-Poincaré series of the exterior algebra
∧•V is a polynomial of degree dimV ,

we have
∧kV = 0 for all k > dimV . Especially, if dimV = n, then

∧nV is 1-dimensional and∧n+1V = 0. This is because any (n+ 1) vectors in an n-dimensional vector space are linearly
dependent, so the exterior product of them is 0. Moreover, dim (

∧kV ) = dim (
∧n−kV ) for all

0≤ k ≤ n.
Any one-dimensional linear space is called a line.
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“If you are willing to prove it, you can
prove it. There is no trick.”

GUOWU MENG

6.1 Determinant Lines
We have known that the top exterior power

∧nV of an n-dimensional vector space V over a field F
is 1-dimensional. So we can define the following:

Definition 6.1 — Determinant Lines. The determinant line of an n-dimensional vector space V
over a field F is defined as the top exterior power of V :

detV =
∧n

V =
∧dimV

V

Note that the det =
∧k is a functor from the category of vector spaces with n-dimensions Vecn

F
to the category of vector spaces with 1-dimensional, i.e., the category of lines, Vec1

F for all k ≥ 0:

Vecn
F Vec1

F

V1
∧nV1 = detV1

V2
∧nV2 = detV2

∧n=det

f
∧n f=det f

As det is a functor, we have the following two properties:

det idV = iddetV , det f g = det f ·det g

In particular, if f ∈ End(V ), then det f : detV → detV is a multiplication by a scalar in F. So
we can identify det f with a scalar in F. This scalar is called the determinant of f and is denoted
by det f .
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Consider the following commutative diagram:

Fn Fn

V V

Fn Fn

A′

P P
f

[−]B′

[−]B

[−]B′

[−]B

A

where V is an n-dimensional vector space over F, B and B′ are two bases of V , f ∈ End(V ), A and
A′ are the matrix representations of f under the bases B and B′ respectively, and P is the change of
basis matrix from B to B′. Then by focusing the red and blue commutative square, we have:

AP = PA′, A = PA′P−1

Then we have:

det A def
== det f def

== det A′

In ordinary linear algebra, A and A′ are called similar matrices, i.e., A∼ A′. This means they
represent the same endomorphism, so they have the same determinant.



6.2 Permutation Groups 83

6.2 Permutation Groups
Before we derive the explicit formula of determinants, we need to introduce the concept of
permutation groups.

Definition 6.2 — Automorphisms. An automorphism is an isomorphism from a mathematical
object to itself.

Definition 6.3 — Automorphism Groups. The set of all automorphisms on a mathematical
object X forms a group under the composition of functions, denoted by Aut(X).

■ Example 6.1 The general linear group GL(V ) of a vector space V over F is the group of all
invertible linear maps from V to V , i.e., GL(V ) = Aut(V ). The group operation is the composition
of functions. ■

■ Example 6.2 The general linear group GLn(F) of degree n over F is the group of all invertible
n×n matrices over F, i.e., GLn(F) = Aut(Fn). The group operation is the matrix multiplication.
Note that GLn(F)∼= GL(Fn). Also note that the group is not abelian if n≥ 2. ■

Definition 6.4 — Permutation Groups. A permutation group Sn on a set n := {1,2, · · · ,n} is
the group of all bijections from n to itself, i.e., Sn = Aut(n). It is called the symmetric group on
n elements. The group operation is the composition of functions.

Then the order of Sn, denoted by |Sn|, is n!.

■ Example 6.3 The permutation group S2 has two elements: the identity permutation 1 and the
transposition σ1 defined by σ1(1) = 2 and σ1(2) = 1. ■

Instead of writing S2 = {1,σ1}, we can write S2 = ⟨σ1 | σ2
1 = 1⟩, where σ1 is called the

generator of S2 and σ2
1 = 1 is called the relation of S2. This is called the presentation of S2.

In general, the generator σi of Sn is defined by:

σi( j) =


j+1, j = i
j−1, j = i+1
j, otherwise

= (i i+1)

■ Example 6.4 The generator σ1 of S3 can be represented by the following diagram:

1 2 3

2 1 3

It can also be written as σ1 = (1 2) or (1 2)(3) or
(

1 2 3
2 1 3

)
. ■

Moreover, we have a cycle with 3 elements denoted as (1 2 3) defined by the
(

1 2 3
2 3 1

)
.

Then the presentation of S3 is:

S3 = ⟨σ1,σ2 | σ 2
1 = 1,σ2

2 = 1,σ1σ2σ1 = σ2σ1σ2⟩

In general, the presentation of Sn is:

Sn = ⟨σ1,σ2, · · · ,σn−1 | σ 2
i = 1,σiσ j = σ jσi (|i− j|> 1),σiσi+1σi = σi+1σiσi+1⟩

The last two relations are called the braid relations:
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• Far commutativity: σiσ j = σ jσi for all |i− j|> 1;
• Braid relation: σiσi+1σi = σi+1σiσi+1.
The permutation group Sn is generated by quotienting the braid group Bn by the relations σ2

i = 1
for all 1≤ i≤ n−1. We call Bn the braid group on n strands. A simple way to visualise the braid
group is to think about braiding n strands of hair. The braid group Bn has the same presentation as
Sn except that there is no relation σ2

i = 1 for all 1≤ i≤ n−1. Consider the following diagrams:

1 2

1 2

σ1==⇒

1 2

2 1

σ1==⇒

1 2

1 2

Consider the following exact sequence:

1 An Sn {±1} 1
Sgn

where An is the alternating group on n elements, i.e., the subgroup of Sn consisting of all
even permutations, and Sgn : Sn → {±1}, the sign homomorphism, is the unique group ho-
momorphism such that Sgn(σi) = −1 for all 1 ≤ i ≤ n− 1. Note that Ker(Sgn) = An and
Im(Sgn) = {±1}.

Remark. An is simple for all n≥ 5. This means that An has no non-trivial normal subgroups for all n≥ 5.

Then we have two properties of the sign homomorphism:
• Sgn(1) = 1;
• Sgn(στ) = Sgn(σ) ·Sgn(τ) for all σ ,τ ∈ Sn.
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6.3 Universal Property of Exterior Powers
We have known that the k-th exterior power

∧kV of a vector space V over a field F is the quotient of
the k-th tensor power V⊗k by the alternating ideal. So, consider dimV = n, we have the following
commutative diagram:

n times︷ ︸︸ ︷
V ×V ×·· ·×V Z

V⊗n

∧nV

∀φ

ι

π

∃!φ

Here Z is any vector space over F and φ : V ×V ×·· ·×V → Z is an alternating (skew-symmetric)
multilinear map, i.e., φ(v1,v2, · · · ,vn) = 0 if vi = v j for some i ̸= j. Then there exists a unique
linear map φ :

∧nV → Z such that φ ◦π ◦ ι = φ . This shows the universal property of exterior
powers.

Also, we can consider the
∧k as a functor applied to the map f : V →W . Then we have∧k f :

∧kV →
∧kW . Then the following diagram commutes:

k times︷ ︸︸ ︷
V ×V ×·· ·×V

k times︷ ︸︸ ︷
W ×W ×·· ·×W

∧kV
∧kW

v⃗1∧⃗v2∧···∧⃗vk f (⃗v1)∧ f (⃗v2)∧···∧ f (⃗vk)

f× f×···× f

∧k f

Note that the permutation group Sn acts on
n times︷ ︸︸ ︷

V ×V ×·· ·×V by:

σi : (v1,v2, · · · ,vn) 7→ (v1,v2, · · · ,vi−1,vi+1,vi,vi+2, · · · ,vn)

By the universal property of exterior powers, we have:

n times︷ ︸︸ ︷
V ×V ×·· ·×V

n times︷ ︸︸ ︷
V ×V ×·· ·×V

∧nV
∧nV

σi

(σi)∗

Consider that a∧b =−b∧a. Then in general, we have:

P∧Q = (−1)pqQ∧P

where P ∈
∧pV and Q ∈

∧qV . This is called the graded commutativity of exterior algebras.
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6.4 Determinants and Duals
Let V be an n-dimensional vector spaces over F and BV = {v1,v2, · · · ,vn} be a basis of V .

As detV is a 1-dimensional vector space, so there is a basis. So the basis of detV is actually
equivalent to detV \{0} Then we have a map from BV to BdetV defined by:

v⃗ = (v1,v2, · · · ,vn) 7→ v1∧ v2∧·· ·∧ vn = det v⃗ ∈ detV

Then we have the following commutative diagram:

BV ∗ BV

BdetV ∗ BdetV

≡

≡

Note that (det v)∗ ≡ det v where v ∈ BV . So we have the following equivalence:

det v∗ ≡ det v≡ (det v)∗

The first equivalence is because of the commutative diagram above, and the second equivalence is
because of the definition of dual basis.

Consider L be a line over F and Ln defined as
n times︷ ︸︸ ︷

L⊗L⊗·· ·⊗L. Also, L0 is defined as F. Normally,
we have L∗⊗L→ F. However, as L is 1-dimensional, we have the following isomorphism:

L∗⊗L≡ F

Then L∗ is regarded as L−1, and they from a group under the tensor product operation, ({Lk},⊗)
where k ∈ Z.

Consider V1 and V2 are two n-dimensional vector spaces over F. Then we have the following
diagram:

V1 V2 V ∗1 V ∗2

detV1 detV2 detV ∗1 detV ∗2

f

det

(−)∗

det

f ∗

det f det f ∗

Then we consider the left part, we have:

det f ∈ Hom(detV1,detV2)≡ (detV1)
∗⊗detV2

Similarly, for the right part, we have:

det f ∗ ∈ (detV ∗2 )
∗⊗detV ∗1 ≡ (detV2)

∗ ∗⊗detV ∗1 ≡ detV2⊗ (detV1)
∗

Note that the first equivalence is due to detV ∗ ≡ (detV )∗. As the tensor product is commutative,
we have:

det f ∗ ≡ det f
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6.5 Determinant Formula
Consider the following diagram:

Fn Fn

det Fn det Fn

A

det

det A

Given the standard basis B = {⃗e1, e⃗2, · · · , e⃗n} of Fn, we have:

det B = e⃗1∧ e⃗2∧·· ·∧ e⃗n

Note that

A =

 | | |
a⃗1 a⃗2 · · · a⃗n

| | |


Consider the map det A : det B 7→ det A ·det B where det A ∈ F is a scalar, we have

det A ·det B = A⃗e1∧ A⃗e2∧·· ·∧ A⃗en = a⃗1∧ a⃗2∧·· ·∧ a⃗n

So, we know that det A is multilinear and alternating in the columns of A. Also, det I = 1.
Consider the elements of A as a⃗ j = ∑

n
i j=1 ai j

j e⃗i j for all 1≤ j ≤ n. Then we have:

a⃗1∧·· ·∧ a⃗n =
n

∑
i1=1

ai1
1 e⃗i1 ∧·· ·∧

n

∑
in=1

ain
n e⃗in =

n

∑
i1,··· ,in=1

ai1
1 · · ·a

in
n (⃗ei1 ∧·· ·∧ e⃗in)

We assume that e⃗ik are mutually distinct for all 1≤ k ≤ n. Otherwise, the term is 0 because of the
alternating property of exterior products. So there exists a unique permutation σ ∈ Sn such that
ik = σ(k) for all 1≤ k ≤ n. Then we have:

a⃗1∧·· ·∧ a⃗n = ∑
σ∈Sn

aσ(1)
1 · · ·aσ(n)

n (⃗eσ(1)∧·· ·∧ e⃗σ(n)) = ∑
σ∈Sn

aσ(1)
1 · · ·aσ(n)

n Sgn(σ) (⃗e1∧·· ·∧ e⃗n)

Hence, we have the formula of determinants:

det A = ∑
σ∈Sn

Sgn(σ) aσ(1)
1 aσ(2)

2 · · ·aσ(n)
n

Remark. For the magnitude part in the formula, aσ(1)
1 aσ(2)

2 · · ·aσ(n)
n , they are in distinct rows and in

distinct columns. They are in distinct columns because of the subscript of aσ( j)
j is j for all 1 ≤ j ≤ n.

They are in distinct rows due to the σ , otherwise it will be zero because of the alternating property of
exterior products.
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6.6 Properties of Determinants
The det A has the following properties:

• Linear in each column: for all 1≤ j ≤ n;
• Alternating (skew-symmetric): · · · a⃗i · · · a⃗ j · · ·=−·· · a⃗ j · · · a⃗i · · · for all i < j;
• det I = 1;

For the alternating property, we have the following evaluation from the original definition of wedge
products (we assumed that char(F) ̸= 2):

· · · a⃗i

k times︷︸︸︷
· · · a⃗ j · · ·= (−1)k · · · · · ·⃗ai⃗a j · · ·

= (−1)k+1 · · · · · ·⃗a j⃗ai · · ·
=−·· · a⃗ j· · ·⃗ai · · ·

Moreover, the three properties above uniquely determine the determinant function.

Remark. The first two properties can be defined on the rows of A as well and they still hold. This is
because the determinant of a matrix is equal to the determinant of its transpose, which is the matrix part
of det f ∗ ≡ det f shown in the previous section.

If we drop the last property, then the function is called the alternating multilinear form. Suppose
that φ : Mn×n(F)→ F is an alternating multilinear form, then we have:

φ(A) = det Aφ(In)

Proposition 6.1 The following equality holds:

det

[
A1 ∗
0 A2

]
= det A1 ·det A2

Proof. Consider the part on the left-hand side, we know that it is multilinear in the columns and
alternating. Then we have the following evaluation:

det

[
A1 ∗
0 A2

]
= det A1 ·det

[
In1 ∗
0 A2

]
= det A1 ·det A2 ·det

[
In1 ∗
0 In2

]
= det A1 ·det A2 ·det

[
In1 0
0 In2

]
= det A1 ·det A2 ·det In1+n2 = det A1 ·det A2

For the last equality, as we know the following property:

· · · a⃗i · · ·(k⃗ai + a⃗ j) · · ·= k · · · a⃗i · · · a⃗ j · · ·+ · · · a⃗i · · · a⃗ j · · ·= · · · a⃗i · · · a⃗ j · · ·

Note that k can be 0 as well. Therefore, we can eliminate all the ∗ in the matrix by using the above
property without changing the determinant value. ■

Instead of writing det , we can use two pipes to denote the determinant. Concretely, we have
the following determinants:∣∣∣∣∣∣∣∣∣∣

1 ∗ ∗ ∗
1 ∗ ∗ ∗

1
1

1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 0 0 0

1 ∗ ∗ ∗
1

1
1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 0 0 0

1 0 0 0
1

1
1

∣∣∣∣∣∣∣∣∣∣
= |I5|= 1
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For the first equality, we eliminated the first row’s ∗ by using the first row. For the second equality,
we eliminated the second row’s ∗ by using the second row.

So, for block upper-triangular matrices, its determinant is equal to the product of the determi-
nants of the diagonal blocks. Same for the block lower-triangular matrices.

In particular, we have the following equation:∣∣∣∣∣∣∣
a11 · · · ∗

...
. . .

...
0 · · · ann

∣∣∣∣∣∣∣= a11 · · ·ann

Also, det [a] = adet [1] = a.

Remark. In determinant, we prefer to use ai j to denote the element in the i-th row and j-th column
instead of using superscript and subscript like ai

j. This is because in determinants, we usually consider
the rows and columns instead of vectors.

Consider the following determinant:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∗ 0 ∗

ai,1 · · · ai, j−1 1 ai, j+1 · · · ai,n

∗ 0 ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)i−1

∣∣∣∣∣∣∣∣∣∣∣∣

ai,1 · · · ai, j−1 1 ai, j+1 · · · ai,n

∗ 0 ∗

∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)i−1+ j−1

∣∣∣∣∣∣∣∣∣∣∣∣

1 ai,1 · · · âi, j · · · ai,n

0 Ai
j

∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)i+ jdet Ai

j

the j-th column

the i-th row

Here, âi, j means that the element ai, j is omitted, and Ai
j is the submatrix obtained by deleting the

i-th row and j-th column of A.
Then we can consider general matrix A, for any j, we have:

det A = det [· · · a⃗ j · · · ]

=
n

∑
i=1

ai
jdet [· · · e⃗i · · · ]

=
n

∑
i=1

ai
j(−1)i+ jdet Ai

j

This is called the cofactor expansion or Laplace expansion along the j-th column. Similarly, we
can have the cofactor expansion along the i-th row.

Then we have the definition of adjoint of a matrix.

Definition 6.5 — Adjoint Matrices. The adjoint matrix of A, denoted by Adj A, is defined as
the matrix whose (i, j)-th entry is (−1)i+ jdet A j

i .
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Remark. Be aware of the notation difference between A j
i and Ai

j. The former means deleting the j-th
row and i-th column, while the latter means deleting the i-th row and j-th column. Also note that the
notation of e⃗i means that the i-th row is 1 and other rows are 0 (standard basis vector), which is different
from the notation in A j

i and Ai
j. To conclude, the subscript is for columns and the superscript is for rows,

except they are in the notation of standard basis vectors.

Proposition 6.2 The following equality holds:

A ·Adj A = Adj A ·A = det AIn

In particular, if det A ̸= 0, then A−1 = 1
det AAdj A.

Proof. In particular, we just have to show
n

∑
k=1

ak
j(Adj A)i

k = det Aδ
i
j

From the previous Laplace expansion, we know:

det A =
n

∑
i=1

ai
j(−1)i+ jdet Ai

j =
n

∑
i=1

ai
j(Adj A) j

i = (A ·Adj A) j
j

Then we know that for i = j, the equality holds. If i ̸= j, then we can consider the following
determinant:

det

∣∣∣∣∣∣· · · a⃗ j · · · a⃗ j · · ·

∣∣∣∣∣∣= 0

This means that originally, there are two same columns in the determinant, so its value is zero.
Then by the Laplace expansion along the j-th column, we have:

0 =
n

∑
k=1

ak
j(−1)k+ jdet Ak

i =
n

∑
k=1

ak
j(Adj A)i

k = (A ·Adj A)i
j

■

the i-th column

the j-th column

To better understand the reason why the equality holds when i ̸= j, we can consider the
following explanation [1]. Consider the 3×3 case: A1

1 −A2
1 A3

1
−A1

2 A2
2 −A3

2
A1

3 −A2
3 A3

3


︸ ︷︷ ︸

Adj A

·

a1
1 a1

2 a1
3

a2
1 a2

2 a2
3

a3
1 a3

2 a3
3


︸ ︷︷ ︸

A

If we multiply the first row of Adj A with the first column of A, we have the same result as the
Laplace expansion along the first column:

a1
1A1

1−a2
1A2

1 +a3
1A3

1 =

∣∣∣∣∣∣
a1

1 a1
2 a1

3
a2

1 a2
2 a2

3
a3

1 a3
2 a3

3

∣∣∣∣∣∣= det A =
3

∑
k=1

ak
1Ak

1 =
3

∑
k=1

ak
1(Adj A)1

k

If we multiply the first row of Adj A with the second column of A, we have:

a1
2A1

1−a2
2A2

1 +a3
2A3

1 =

∣∣∣∣∣∣
a1

2 a1
2 a1

3
a2

2 a2
2 a2

3
a3

2 a3
2 a3

3

∣∣∣∣∣∣= 0 =
3

∑
k=1

ak
2Ak

1 =
3

∑
k=1

ak
2(Adj A)1

k
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6.7 Vandermonde Determinant
Consider the following determinant; here, the superscript means the power:

detVn =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
x1 x2 · · · xn
...

...
. . .

...
xn−1

1 xn−1
2 · · · xn−1

n

∣∣∣∣∣∣∣∣∣
Then we consider x1,x2, · · · ,xn−1 are fixed and we consider the determinant as a polynomial of xn.
Note that the degree of xn is n−1, and the polynomial is:

detVn = (−1)n+1| · · · |+(−1)n+2xn| · · · |+ · · ·+(−1)n+nxn−1
n

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
x1 x2 · · · xn−1
...

...
. . .

...
xn−1

1 xn−1
2 · · · xn−1

n−1

∣∣∣∣∣∣∣∣∣
Also note that if xn = xi for some 1≤ i≤ n−1, let say i = n−1, then the determinant becomes:∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1
x1 x2 · · · xn−1 xn−1
...

...
. . .

...
...

xn−1
1 xn−1

2 · · · xn−1
n−1 xn−1

n−1

∣∣∣∣∣∣∣∣∣= 0

This means that xn− xi is a factor of the polynomial. Therefore, by the fundamental theorem of
algebra, we have:

detVn =C

n−1 factors︷ ︸︸ ︷
(xn− x1)(xn− x2) · · ·(xn− xn−1)

Here C is a constant that does not depend on xn. To find C, we can consider the coefficient of xn−1
n .

Note that the coefficient of xn−1
n in the above polynomial expansion is detVn−1. So C = detVn−1.

Then by induction, we have:

detVn = ∏
1≤i< j≤n

(x j− xi)
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6.8 Feynman Diagram Formula
Consider the case where char(F) = 0. Let A be a n×n matrix and I be the identity matrix of order
n. Then we have the following formula:

det (I + tA) = 1− tr A t +
(
(tr A)2

2!
− tr A2

2

)
t2−·· ·+(−1)ndet A tn

This is called the Feynman diagram formula, as it is inspired by Feynman diagrams in quantum
field theory. From this formula, the determinant can be expressed by traces.

It is hard to remember the coefficients in the formula. However, we can use the following
method to derive them. Consider the following diagram for t1 term:

−1 A

Here the circle means a trace operation, and the arrow means A. So the coefficient is −tr A.
For t2 term, we have diagram:

−1 A −1 A −1 AA

|

|

The left two circles mean (−tr A)2, and we have to divide by 2! because of the symmetry of the
two identical circles. The right circle means −tr A2, but this is a cyclic group of order 2, so we
have to divide by 2. Therefore, the total term for t2 is:

(−tr A)2

2!
− tr A2

2
=

(tr A)2

2!
− tr A2

2

For t3 term, we have diagram:

−1 A −1 A −1 A −1 AA

|

|

−1 A −1

AA

A

|

||

The left three circles mean (−tr A)3, and we have to divide by 3! because of the symmetry of the
three identical circles. The second diagram means (−tr A)(−tr A2), and we have to divide by 2
because of the cyclic group of order 2 on the bigger circle. The last diagram means −tr A3, and
this is a cyclic group of order 3, so we have to divide by 3. Therefore, the total term for t3 is:

(−tr A)3

3!
+

(−tr A)(−tr A2)

2
− tr A3

3
=−(tr A)3

3!
+

(tr A)(tr A2)

2
− tr A3

3



7. Canonical Forms of Endomorphisms

“Babies have to survive, so they have the
strong desire to learn stuffs. You think you
are not good at math because you don’t
have the strong desire to learn math.”

GUOWU MENG

7.1 Diagonal Forms
Before, we have studied the canonical matrix representation of linear maps between two different
dimension vector spaces. It is natural to ask what is the canonical form of linear maps from a vector
space to itself, i.e. endomorphisms. Consider the following diagram:

V V

Fn Fn

Fn Fn

T

[−]B [−]B

A

A

As both the domain and codomain are the same vector space, both basis B are the same. So the
matrix representation of T is much more restricted. The A is simplest looking matrix repsentation
of T , but what does it look like?

Generically, we have the following form:

A =


λ1

λ2
. . .

λn


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where empty places are filled with zeros. It is called the diagonal matrix. Here λi are the
eigenvalues of T . If such form exists, we say that T is completely reducible, or normally say that T
is diagonalisable. If T is not completely reducible, then we have to consider more complicated
forms, which will be discussed later.

Then we have the diagram:

Fn Fn

Fn Fn

A

P−1 ∼= P−1∼=

D
λ1

. . .
λn



Here P is the change of basis matrix from the basis that gives A to the basis that gives D. Then we
have:

A = PDP−1

We have A∼ D, i.e. A is similar to D.
Then we have two questions:

1. How do we know whether T is completely reducible?
2. If T is completely reducible, how can we find P and D?

Assume that D =

λ1In1

. . .
λkInk

, where λi ∈ F are distinct eigenvalues and Ini are identity

matrices of order ni, ni > 0 and ∑
k
i=1 ni = n. For example, we have:

D =

1 0 0
0 1 0
0 0 2


where λ1 = 1, λ2 = 2, n1 = 2 and n2 = 1.

Then we have the decomposition of V :

V =Vλ1⊕Vλ2⊕·· ·⊕Vλk

where Vi = Ker(T −λi1V ) are the eigenspaces of T corresponding to eigenvalues λi. Moreover, we
have the decomposition of Fn:

Fn = Span(e1, · · · ,en1)⊕Span(en1+1, · · · ,en1+n2)⊕·· ·⊕Span(en1+···+nk−1+1, · · · ,en1+···+nk)

Note that dimVλi = ni and ∑
k
i=1 ni = n.

Then we have the following commutative diagram:
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V V

Fn Fn

T=λ11V
λ1
⊕···⊕λk1V

λk


λ11V

λ1
. . .

λk1V
λk



D
λ1In1

. . .
λkInk


In other words, if T is completely reducible, then there are distinct numbers λ1, · · · ,λk ∈ F

and a non-trivial decomposition V =Vλ1⊕·· ·⊕Vλk such that T |Vλi
= λi1Vλi

for each 1≤ i≤ k, and
T = λ11Vλ1

⊕·· ·⊕λk1Vλk
. Each non-zero vector vi in Vλi is an eigenvector of T corresponding to

eigenvalue λi. This answered the first question.
Then how to find the eigenvalues and eigenspaces? We can consider the following linear map:

λi1Vλi
: Vλi →Vλi , x 7→ λix

Then we have the following equation:

T x = λix ⇐⇒ (λi1V −T )x = 0 ⇐⇒ x ∈ Ker(λi1V −T )

As x is non-zero, then (λi1V −T ) is not injective, i.e. not invertible. Therefore, we have:

det (λi1V −T ) = 0

So the eigenvalues λi are exactly the roots of the polynomial det (λ1V −T ), which is called the
characteristic polynomial of T . Note that pT (λ ) = det (λ1V − T ) is a polynomial of degree
n = dimV . Similarly, we can define the characteristic polynomial of a matrix A as pA(λ ) =
det (λ In−A).

For example, consider the following matrix:

A =

[
1 3
0 2

]
, λ I−A =

[
λ −1 −3

0 λ −2

]
, pA(λ ) = (λ −1)(λ −2)

The roots of pA(λ ) are 1 and 2, so the eigenvalues of A are 1 and 2. Then we can find the
eigenspaces:

Vλ=1 = Nul(1 · I−A) = Nul

[
0 −3
0 −1

]
= Nul

[
0 1
0 0

]
= Span

[
1
0

]
Vλ=2 = Nul(2 · I−A) = Nul

[
1 −3
0 0

]
= Span

[
3
1

]
Then we have:

A =

[
1 3
0 2

]
=

[
1 3
0 1

][
1 0
0 2

][
1 3
0 1

]−1

= PDP−1



96 Chapter 7. Canonical Forms of Endomorphisms

Remark. To find the null space, we first use row operations to reduce the matrix to its row echelon form.
Then we consider the number of free variables to find the number of basis vectors in the null space. Then
we can let one free variable as 1 and other free variables as 0 to find the value of each pivot variable.
Repeating this process for each free variable, we can find all basis vectors of the null space.

For example, for the first matrix above, we have: 0 ·1+1 · x2 = 0 =⇒ x2 = 0. So the null space

is Span
[

1
0

]
. For the second matrix above, we have: 1 · x1−3 ·1 = 0 =⇒ x1 = 3. So the null space is

Span

[
3
1

]
.

In matrix, we have:[
Ap⃗1 · · · Ap⃗n

]
= AP = PD =

[
λ1 p⃗1 · · · λn p⃗n

]
⇐⇒ Ap⃗i = λi p⃗i

Proposition 7.1 The following are equivalent:
1. T is completely reducible.
2. T = λ11Vλ1

⊕·· ·⊕λk1Vλk
for some distinct eigenvalues λ1, · · · ,λk and non-trivial decompo-

sition V =Vλ1⊕·· ·⊕Vλk .
3. V has an eigenvector basis of T , i.e. there exists a basis of V consisting of eigenvectors of T .
4. dimV = ∑

k
i=1 dim Eλi(T ) = ∑

k
i=1 dimVλi , where λ1, · · · ,λk are the distinct eigenvalues of T

and Vλi = Eλi(T ) are the eigenspaces of T .

Consider the following example:

■ Example 7.1 A =

[
0 1
0 0

]
is not completely reducible. The pA(λ ) = λ 2, so the only eigenvalue

is 0. Then we have:

Vλ=0 = Nul(0 · I−A) = Nul

[
0 −1
0 0

]
= Span

[
1
0

]
So there does not exist a eigenvector basis of A, as choosing any two vectors in Vλ=0 will be linearly
dependent. Therefore, A is not completely reducible. ■

Proposition 7.2 Eλ1 + · · ·+Eλk is a direct sum.

Proof. We just need to check if x1 + · · ·+ xk = 0 with xi ∈ Eλi , then each xi = 0. We can use
induction on k. For k = 1, we have x1 = 0 =⇒ x1 = 0. Assume that the statement holds for k−1.
Then we have:{

x1 + · · ·+ xk = 0
T x1 + · · ·+T xk = λ1x1 + · · ·+λkxk = 0

Then we subtract λk times the first equation from the second equation, we have:

(λ1−λk)x1 + · · ·+(λk−1−λk)xk−1 = 0

Given that λi are distinct, by the induction hypothesis, we have (λi−λk)xi = 0 =⇒ Eλi ∋ xi = 0 for
each 1≤ i≤ k−1. Then by the first equation, we have xk = 0. This completed the induction. ■

Then we know that the sum of eigenspaces is a direct sum, i.e. Eλ1⊕·· ·⊕Eλk . Then we have:

dimV = ∑dim Eλi(T )
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■ Example 7.2 Let A =

1 0 4
0 1 3
0 0 2

. Then we have pA(λ ) = (λ −1)2(λ −2). The eigenvalues

are 1 and 2, where λ = 1 has algebraic multiplicity 2 and λ = 2 has algebraic multiplicity 1. Then
we can find the eigenspaces:

Eλ=1(A) = Nul(1 · I−A) = Nul

0 0 −4
0 0 −3
0 0 −1

= Nul

0 0 1
0 0 0
0 0 0

= Span


1

0
0

 ,
0

1
0


Eλ=2(A) = Nul(2 · I−A) = Nul

1 0 −4
0 1 −3
0 0 0

= Span

4
3
1


Then we have dim Eλ=1 +dim Eλ=2 = 2+1 = 3 = dimV . Therefore, A is completely reducible.
Then we can find the diagonalisation:1 0 4

0 1 3
0 0 2

=

1 0 4
0 1 3
0 0 1

1 0 0
0 1 0
0 0 2

1 0 4
0 1 3
0 0 1

−1

=

4 1 0
3 0 1
0 0 1

2 0 0
0 1 0
0 0 1

4 1 0
3 0 1
0 0 1

−1

■

Completely reducible matrix representations are “the” simplest forms of endomorphisms. Note
that it is not unique, it is unique up to isomorphism, unless the field is ordered. However, not all
endomorphisms are completely reducible. Then we have another term called semisimple. These
two terms are borrowed from representation theory of lie algebras.

Definition 7.1 — Completely Reducible. We say T is a completely reducible if there exists a
matrix representation of T of the following form:λ1In1

. . .
λkInk


Equivalently, T is completely reducible if V has a non-trivial decomposition V =Vλ1⊕·· ·⊕Vλk

with respect to which T = λ11Vλ1
⊕·· ·⊕λk1Vλk

for some distinct eigenvalues λ1, · · · ,λk.

Definition 7.2 — Semisimple. We say T is semisimple if T ⊗F F : V ⊗F F→V ⊗F F is com-
pletely reducible, where F is the algebraic closure of F and V ⊗F F is linear space over F.

Remark. We can take F= R, then F= C. Algebraic closure means that every polynomial in F[x] has a
root in F. For example, x2 +1 has no root in R, but it has roots ±i in C.

Note that −⊗F≡ idF, so if we change it to −⊗F F, then we are just changing the field from F to F
without changing the values inside. For example, 1 can be viewed as an element in R or C.

In general, T is not semisimple, but it can be decomposed into a semisimple part and a nilpotent
part. Moreover, this decomposition is unique.

We can consider the End(V ) ≡Mn×n(F) ≡ Fn2
as a vector space. Then T ∈ Fn2

is a vector.
Then such the set of containing such T forms a dense open subset of End(V ) = Fn2

. The dense open
subset is in the Zariski topology. More precisely, the set of all completely reducible endomorphisms
with distinct eigenvalues forms a dense open subset of End(V ). We will study Zariski topology
next section.
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Once we know that completely reducible endomorphisms are dense in End(V ), then if we want
to prove some identity, it suffices to prove it for completely reducible endormophisms. One of the
example is the Cayley-Hamilton theorem.

Theorem 7.1 — Cayley-Hamilton Theorem. Let T : V →V be an endomorphism of a finite-
dimensional vector space V over F. Then T satisfies its own characteristic polynomial, i.e.
pT (λ )|λ=T = 0.

Remark. pT (λ ) = det (λ1V −T ) = λ n + · · ·+(−1)ndet (T )λ 0, where λ 0 = 1 and T 0 = 1V .

Proof. As pT (λ )|λ=T is a polynomial in T , it suffices to verify the theorem on a dense set.
Let T = λ11Vλ1

⊕·· ·⊕λk1Vλk
be a completely reducible endomorphism with distinct eigenvalues

λ1, · · · ,λk and non-trivial decomposition V =Vλ1⊕·· ·⊕Vλk . Then we have 1V = 1Vλ1
⊕·· ·⊕1Vλk

.
Therefore, we have:

λ1V −T = (λ −λ1)1Vλ1
⊕·· ·⊕ (λ −λk)1Vλk

Then the characteristic polynomial is:

pT (λ ) = det (λ1V −T ) = (λ −λ1)
dimVλ1 · · ·(λ −λk)

dimVλk =
k

∏
i=1

(λ −λi)
ni

where ni = dimVλi . Note that λi1Vλi
−T = 0 on Vλi , as T |Vλi

= λi1Vλi
. Therefore, we have:

pT (λ )|λ=T =
k

∏
i=1

(λi1V −T )ni = 0

As for any v ∈V , we can write v = v1 + · · ·+ vk with vi ∈Vλi , then we have:

(λi1Vλi
−T )ni(vi) = 0 ∀i =⇒ pT (λ )|λ=T (v) = 0

This completed the proof. ■

If T is completely reducible, then

ni = dimVλi

where ni is the algebraic multiplicity of eigenvalue λi and dimVλi is the geometric multiplicity of
eigenvalue λi. In general, we have ni ≥ dimVλi . Then {λ1, · · · ,λk} is the set of roots of pT (λ ) and
Vλi = Ker(λi1V −T ).

Then for any T , if the set of roots of pT (λ ) in F is {λ1, · · · ,λk}, then we can define the
generalised eigenspaces:

Vλi = Ker(λi1V −T ) ∀1≤ i≤ k

Then we check whether dimV = ∑
k
i=1 dimVλi . If it holds, then T is completely reducible. If not,

then T is not. So this characterise completely reducible endomorphisms.
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7.2 Zariski Topology
Before studying Zariski topology, we first introduce affine spaces.

Definition 7.3 — Affine Spaces. A set A is called an affine space over a field F if it is a
principal (Fn,+)-set, i.e. there is a free and transitive action of the additive group (Fn,+) on A:

+ : A×Fn→ A, (P, v⃗) 7→ P+ v⃗

Each element P ∈ A is called a point in A.

Principal means that the group action is free and transitive. Free means that if g is not the
identity element, then g · x ̸= x for any x in the set. Transitivity means that any two elements x,y in
the set are related by some action of the group, g, such that g · x = y.

For example, consider the SO(2) action on the plane R2. The action is not free and not transitive.
It is not free because rotating a point on the plane by 0 degree (the identity element) keeps the point
unchanged, but rotating it by any other angle will change the point. It is not transitive because
there is no rotation that can map a point to another point with a different distance from the origin.
However, if we consider the orbits of the action, i.e. circles centered at the origin, then the action is
transitive on each orbit and free except for the origin.

Then we introduce what topology is.

Definition 7.4 — Topology. Let X be a set. A topology on X is a collection τ of subsets of X
such that:

1. φ ,X ∈ τ;
2. the union of any collection of sets in τ is also in τ;
3. the intersection of any finite number of sets in τ is also in τ .

The pair (X ,τ) is called a topological space. Each set in τ is called an open set in X .

We can define closed sets in X as the complements of open sets in X . Then we have the following
equivalent definition of topology.

Definition 7.5 — Topology (Closed Set Version). Let X be a set. A topology on X is a
collection τ of subsets of X such that:

1. φ ,X ∈ τ;
2. the intersection of any collection of sets in τ is also in τ;
3. the union of any finite number of sets in τ is also in τ .

The pair (X ,τ) is called a topological space. Each set in τ is called an closed set in X .

Then Zariski topology is defined as follows.

Definition 7.6 — Zariski Topology. Let A be an affine space over a field F. The Zariski topology
on A is defined by taking the closed sets to be the zero loci of sets of polynomials in F[x1, · · · ,xn].
More precisely, for any set of polynomials S⊆ F[x1, · · · ,xn], the corresponding closed set is:

V (S) = {P ∈ A : f (P) = 0 ∀ f ∈ S}=
⋂
α

{ fα = 0}

The pair (A,τZar) is called a Zariski topological space, where τZar is the Zariski topology on A.

Then the A ∈ Fn2 ≡An2

F can be viewed as a point in the affine space An2

F over F. Then the set of
all completely reducible endomorphisms with distinct eigenvalues forms a dense open subset of
End(V ) = Fn2

in the Zariski topology. Dense means that its closure is the whole space. Open means
that its complement is a closed set, i.e. the zero locus of some set of polynomials in F[x1, · · · ,xn2 ].
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7.3 Ring Theory
Before studying the canonical forms of not completely reducible endormorphisms, we need to
introduce some concepts in ring theory.

Definition 7.7 — Domain. A domain is a non-trivial commutative ring R with unity 1R ̸= 0R if
non-zero elements a,b ∈ R satisfy ab ̸= 0R.

■ Example 7.3 Z is a domain. Given any two non-zero integers a,b ∈ Z, we have ab ̸= 0. ■

■ Example 7.4 Z/6 is not a domain. For example, 2,3 ∈ Z/6 are non-zero elements, but 2 ·3 = 0
in Z/6. ■

Definition 7.8 — Module. A module over R is an abelian group (M,+) together with a ring
action of R on (M,+).

■ Example 7.5 R itself is a module over R with the ring action being the multiplication in R. ■

Definition 7.9 — Submodule. A submodule N of a module M over a ring R is a subgroup of
(M,+) that is closed under the ring action of R on M, i.e. for any r ∈ R and n ∈ N, we have
r ·n ∈ N.

Definition 7.10 — Ideal. An ideal I of a ring R is a submodule of the module R over itself.

■ Example 7.6 Consider F over itself. Then the only ideals are {0} and F itself. So the ideal of a
field is trivial. ■

■ Example 7.7 Consider Z over itself. Then the ideals are all of the form (n) = nZ= {nk : k ∈ Z}
for some n ∈ Z. So the ideals of Z are non-trivial. For example, (2) = {0,±2,±4, · · ·}. ■

Definition 7.11 — Principal Ideal Domain. A principal ideal domain (PID) is a domain R
such that every ideal of R is of the form (a) = aR for some a ∈ R.

■ Example 7.8 Z is a principal ideal domain, as every ideal of Z is of the form (n) = nZ for some
n ∈ Z. ■

■ Example 7.9 F[x] is a principal ideal domain, as every ideal of F[x] is of the form ( f (x)) =
f (x)F[x] for some f (x) ∈ F[x]. It can be proved using the division algorithm of polynomials. ■

Definition 7.12 — Finitely Generated Module. A module M over a ring R is called finitely
generated if M is the span of a finite set of elements in M, i.e., M = ⟨m1,m2, · · · ,mk⟩ for some
m1,m2, · · · ,mk ∈M. It may not be unique.

Note that we do not use the definition of the finite-dimensional vector space here, as a module
over a ring may not have a basis. There exists something called the torsion module that prevents
the existence of basis. We will discuss it later.

Then we introduce the following theorem which can derive Jordan canonical form.

Theorem 7.2 — Classification Theorem of Finitely Generated Modules over a PID. Let R
be a principal ideal domain and M be a finitely generated module over R. Then M is isomorphic
to a finite direct sum of cyclic modules of the form:

M ∼= Rr⊕
m⊕

i=1

R/(ai) = Rr⊕R/(a1)⊕·· ·⊕R/(am)

with ai ∈ R\{0} and ai|ai+1 for each 1≤ i≤ m−1.
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Remark. Note that a|b means that there exists some c ∈ R such that b = ac.

Here Rr is the free part of M and
⊕m

i=1 R/(ai) is the torsion part of M. The torsion part prevents
the existence of basis of M. If the torsion part is trivial, i.e., m = 0, then M is a free module and has
a basis. Moreover, r is the rank of M and is unique. ai are called the invariant factors of M and are
unique up to multiplication by units in R. This is called the invariant factor decomposition of M.
There is another decomposition called primary decomposition, or elementary divisor decomposition,
or Chinese Remainder decomposition.

Theorem 7.3 — Classification Theorem of Finitely Generated Modules over a PID (Primary
Decomposition). Let R be a principal ideal domain and M be a finitely generated module over
R. Then M is isomorphic to a finite direct sum of cyclic modules of the form:

M ∼= Rr⊕
m⊕

i=1

R/(pei
i ) = Rr⊕R/(pe1

1 )⊕·· ·⊕R/(pem
m )

with pi being prime or irreducible elements in R and ei ∈ Z+ for each 1≤ i≤ m.

Remark. As R is a PID, so every ideal is principal. Therefore, every ideal generated by a prime or
irreducible element is a prime ideal. This is why we call it primary decomposition.

For any ring R, we can decomposite as follows:

R = {0}∪R×∪S

where R× is the set of units in R and S is the set of non-units and non-zero elements in R. Then
any u ∈ R is called a unit if there exists some v ∈ R such that uv = vu = 1R. For example, in Z, the
units are ±1. In F[x], the units are all non-zero constant polynomials.

Then the set of all prime elements and the set of all irreducible elements in R are subsests of
S. In general, they are not the same. The set of all prime elements is a subset of the set of all
irreducible elements. However, in a principal ideal domain they are the same. Irreducible elements
are those elements that cannot be factored into the product of two non-unit elements, i.e., if x ̸= 0
and x /∈ R×, then whenever x = yz, then y or z must be a unit.
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7.4 Jordan Canonical Form
Let V be a finite-dimensional linear space over an algebraically closed field F, e.g. C. Then
F[x] is a principal ideal domain and x−λi are the prime or irreducible elements in F[x] for each
λi ∈ F.

Remark. If we take non-zero α ∈ F, then α(x−λi) is also an irreducible element in F[x], as α is a unit
in F[x] and we have (x−λi) = (α(x−λi)). Therefore, the irreducible elements are only unique up to
multiplication by units. We can just choose monic polynomials as the irreducible elements.

Then for any endomorphism T : V →V . It is equivalent to consider V as a module over F[x]
with the ring action defined as:

F [x]×V →V, (p(x),v) 7→ p(T )v

■ Example 7.10 Let p(x) = 2x2 +3x−1 ∈ F[x] and T ∈ End(V ). Then for any v ∈ V , we have
p(T )v = 2T 2v+3T v− v. ■

V is the finite-dimensional linear space over F, so it is a finitely generated module over F[x]
with rank 0. It is the torsion part only. Therefore, by the classification theorem of finitely generated
modules over a PID, we have:

V ∼=
m⊕

i=1

F[x]
(x−λi)ei

=
F[x]

(x−λ1)e1
⊕·· ·⊕ F[x]

(x−λm)em

Note that T is the same as the multiplication by x in the module, i.e., x· : V →V defined as v 7→ xv.

Then for each cyclic module
F[x]

(x−λi)ei
, we have the dimension being ei. Therefore, we have the

basis on
F[x]

(x−λi)ei
as:

Bi = {1,(x−λi),(x−λi)
2, · · · ,(x−λi)

ei−1}

Then we consider the following diagram:

F[x]
(x−λi)ei

F[x]
(x−λi)ei

Fei Fei

x·
Ti

[−]Bi [−]Bi

Jei (λi)

Then what is Jei(λi)? We have:

x ·1 = x = 1 · (x−λi)+λi ·1

So the first column of Jei(λi) is [λi 1 0 · · · 0]T . Similarly, we have:

x · (x−λi) = 1 · (x−λi)
2 +λi · (x−λi)

x · (x−λi)
ei−1 = 1 · (x−λi)

ei +λi · (x−λi)
ei−1 = λi · (x−λi)

ei−1

So the matrix representation of x· on
F[x]

(x−λi)ei
with respect to the basis Bi is:

Jei(λi) =


λi

1 λi

1 λi
. . . . . .

1 λi


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We can switch the order of basis elements in Bi to get the following equivalent representation:

Jei(λi) =


λi 1

λi 1

λi
. . .
. . . 1

λi


This is called a Jordan block of size ei with eigenvalue λi.

Then the matrix representation of T on V with respect to the basis B = B1∪B2∪·· ·∪Bm is:

J =


Je1(λ1)

Je2(λ2)
. . .

Jem(λm)







8. Euclidean Spaces

“The idea of representation is one of the
few great ideas in Mathematics.”

GUOWU MENG

Before studying Euclidean spaces, we first review tensors and then introduce inner products.

8.1 Tensor
Let V be a finite-dimensional vector space over a field F. Then we have the following definitions.

Definition 8.1 — k-form. A k-form on V is a multilinear map:

V ×V ×·· ·×V︸ ︷︷ ︸
k times

→ F

which is linear in each argument. It is an element in (V ∗)⊗k.

More concretely, for 1-form, it is a linear functional on V , i.e. an element in V ∗. It is also called
covector. For 2-form, it is a bilinear map on V , i.e. an element in V ∗⊗V ∗. To prove that the set of
all 2-forms on V is isomorphic to V ∗⊗V ∗, we can consider the following diagram:

MapML(V ×V,F) Hom(V,V ∗)

V ∗⊗V ∗ Hom(V,F)⊗V ∗

≡

≡

≡

Remember that Hom(V1,V2⊗V3)≡ Hom(V1,V2)⊗V3.
Moreover, we have the following two special types of 2-forms which are the elements inside

the symmetric and exterior powers of V ∗.

Definition 8.2 — Symmetric and Skew-symmetric 2-forms. A 2-form ω : V ×V → F is
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called symmetric if

ω(u,v) = ω(v,u)

for all u,v ∈V . It is an element in S2V ∗. The 2-form ω is called skew-symmetric, or antisym-
metric, if

ω(u,v) =−ω(v,u)

for all u,v ∈V . It is an element in
∧2V ∗.

Then we define the tensor spaces.

Definition 8.3 — Tensor Spaces. Let V be a finite-dimensional vector space over a field F.
The tensor space of type (r,s) on V is defined as:

T r,sV =V ⊗V ⊗·· ·⊗V︸ ︷︷ ︸
r times

⊗V ∗⊗V ∗⊗·· ·⊗V ∗︸ ︷︷ ︸
s times

Elements in T r,sV are called tensors of type (r,s) on V , which is a mixed type if r,s ̸= 0.

If a tensor of type (r,0), then it is called a contravariant tensor or simply a tensor. If a tensor
of type (0,s), then it is called a covariant tensor or simply a form. For T 0,0V , it is defined as F
itself. Any elements in T 0,0V are scalar type tensor on V , or simply scalars.

Then we know that End(V ) ≡ V ⊗V ∗ ≡ T 1,1V . Therefore, any endomorphism on V can be
viewed as a tensor of type (1,1) on V , represented by ai

j with respect to a basis BV = {⃗v1, v⃗2, · · · , v⃗n}
of V . Here the upper index i represents the contravariant part and the lower index j represents the
covariant part. To know that what ai

j means, we can consider the following diagram:

V V

Fn Fn

T

[−]BV [−]BV

A=[ai
j]BV

Then how to get the matrix representation A = [ai
j]BV of T with respect to the basis BV ? We have:

a⃗ j = A⃗e j, ai
j = e⃗T

i A⃗e j = êiA⃗e j = ⟨êi, A⃗e j⟩.

So we have [ai
j] = ⟨v̂i,T v⃗ j⟩. We can have an identification between End(V ) and T 1,1V as follows:

T ↔ T v⃗ j⊗ v̂ j

For covariant and contravariant, we have the following table:

Object Transformation Type

Standard Basis Vector (⃗ei) Covariant

Dual Basis Vector (êi) Contravariant

Component of a Vector (vi) Contravariant

Component Basis Vector (vi) Covariant

An object is considered as covariant if it transform in the same way as the basis vectors of the
original vector space. If you cannot understand it, make up some examples of scaling the vector
spaces.
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In general, an element t ∈ T r,sV can be represented as:

t i1i2···ir
j1 j2··· js⃗vi1⊗ v⃗i2⊗·· ·⊗ v⃗ir ⊗ v̂ j1⊗ v̂ j2⊗·· ·⊗ v̂ js

Note that the representation depends on the choice of basis BV of V , i.e., the following two
represents the same tensor with respect to different bases:[

t i1i2···ir
j1 j2··· js

]
BV
∼
[
t̃ ĩ1 ĩ2···̃ir

j̃1 j̃2··· j̃s

]
B̃V

The two representations are related by the base change matrices::

(ṽ1, ṽ2, · · · , ṽn) = (v1,v2, · · · ,vn)A, A = [ai
j̃
]B̃V
BV
∈ GL(V )

Remark. It is actually the right action of GL(V ) on the set of all bases of V , BV :

BV ×GL(V )→BV , (v,A) 7→ vA = ṽ

Then we have the following equation:

ṽ j̃ = viai
j̃

For A−1 = [bĩ
j]
BV

B̃V
, we have ai

j̃
bk̃

j = δ k̃
j̃

and bĩ
ja

j
k̃
= δ ĩ

k̃
. Therefore, we have:

vk = ṽ j̃b
j̃
k

Remark. For easier memorisation, we use the calculus operators:

∂ ṽ j̃

∂vi
= ai

j̃
,

∂vk

∂ ṽ j̃
= b j̃

k

To memorise it, we consider the lower indices in denominators (lower) will flip to the upper indices in
numerators. (As lower twice, so flip to upper)

Then we can use the chain rule to verify the two equations of A and A−1:

∂ ṽ j̃

∂vi

∂vk

∂ ṽ j̃
= δ

i
k

Then we have the transformation rule for the representation of t ∈ T r,sV under the base change
from BV to B̃V :

t̃ ĩ1 ĩ2···̃ir
j̃1 j̃2··· j̃s

=
(

bĩ1
i1bĩ2

i2 · · ·b
ĩr
ir

)
t i1i2···ir

j1 j2··· js

(
a j1

j̃1
a j2

j̃2
· · ·a js

j̃s

)
Given that BV = {⃗v1, · · · , v⃗n} is a basis of V , then we can define a basis of T r,sV as follows:

BT r,sV = {⃗vi1⊗ v⃗i2⊗·· ·⊗ v⃗ir ⊗ v̂ j1⊗ v̂ j2⊗·· ·⊗ v̂ js : 1≤ i1, i2, · · · , ir, j1, j2, · · · , js ≤ n}

Then for symmetric and skew-symmetric k-forms, we have:

BSkV = {⃗vi1 v⃗i2 · · · v⃗ik : 1≤ i1, i2, · · · , ik ≤ n}
B∧kV = {⃗vi1 ∧ v⃗i2 ∧·· ·∧ v⃗ik : 1≤ i1, i2, · · · , ik ≤ n}

Then “honest” definition of symmetric basis is:

{⃗vi1 v⃗i2 · · · v⃗ik : 1≤ i1 ≤ i2 ≤ ·· · ≤ ik ≤ n}
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but it is redundant. We just have to make sure that the representation of any symmetric k-form is
unique for a given basis. For example, in 2-form case with the basis {⃗ei⊗ e⃗ j}, we originally have
to write:

t = ∑
1≤i≤ j≤n

ti j⃗ei⊗ e⃗ j

but this is ugly, so we just write:

t = t i j⃗ei⃗e j

with t i j = t ji. If we ignored the condition on t i j, then we have ai j =−a ji such that:

t = t i j⃗ei∧ e⃗ j +ai j⃗ei∧ e⃗ j = (t i j +ai j )⃗ei∧ e⃗ j = 0

As ai j = a ji =−ai j.
Then for skew-symmetric basis, let say t ∈ B∧kV , then we have:

t = tI v⃗I = t i1i2···ik v⃗i1 ∧ v⃗i2 ∧·· ·∧ v⃗ik

with I = (i1, i2, · · · , ik) being an ordered index set with 1 ≤ i1 < i2 < · · · < ik ≤ n. Then for any
permutation σ ∈ Sk, to make sure it is unique, we require:

tσ(I) = Sgn(σ)tI

where σ(I) = (iσ(1), iσ(2), · · · , iσ(k)).
In conclusion, we have to make sure that the representation of any symmetric or skew-symmetric

k-form is unique for a given basis by the following conditions respectively:

Symmetric: t i1i2···ik = t iσ(1)iσ(2)···iσ(k)

Skew-symmetric: t i1i2···ik = Sgn(σ)t iσ(1)iσ(2)···iσ(k)
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8.2 Inner Product
Let V be a finite-dimensional real linear space. Then we have the following definitions.

Definition 8.4 — Inner Product. An inner product on V is a map ⟨−,−⟩ : V ×V →R such that
1. Bilinearity: ⟨−,u⟩ and ⟨u,−⟩ are linear functionals on V for all u ∈V ;
2. Symmetry: ⟨u,v⟩= ⟨v,u⟩ for all u,v ∈V ;
3. Positive-definiteness: ⟨v,v⟩ ≥ 0 for all v ∈V with equality if and only if v = 0.

Note that an inner product on V is a positive-definite symmetric 2-form on V .

Definition 8.5 — Pseudo Inner Product. A pseudo inner product on V is a non-degenerate
symmetric bilinear form on V , i.e., an element ⟨−,−⟩ ∈ S2V ∗ such that ⟨−,−⟩^ : V → V ∗ is
isomorphic.

Then a real linear space V with an inner product ⟨−,−⟩ is called a Euclidean space, denoted by
(V,⟨−,−⟩).

Definition 8.6 — Metric Space. A metric space is a non-empty set X together with a metric
structure, i.e., a distance function d : X×X → R that sends (x,y) to d(x,y) such that

1. Positivity: d(x,y)≥ 0 for all x,y ∈ X with equality if and only if x = y;
2. Symmetry: d(x,y) = d(y,x) for all x,y ∈ X ;
3. Triangle Inequality: d(x,z)≤ d(x,y)+d(y,z) for all x,y,z ∈ X .

If we want to combine the metric structure with the linear structure on V , we have to make
sure that the distance function d : V ×V → R satisfies the two additional properties in order to be
compatible with the linear structure. We would say the properties are harmonic with the linear
structure.

Definition 8.7 — Normed Linear Space. A real normed linear space is a real linear space
V together with a compatible metric structure or a normed structure, i.e., a distance function
d : V ×V → R such that

1. Translation Invariance: d(u+w,v+w) = d(u,v) for all u,v,w ∈V ;
2. Homogeneity: d(αu,αv) = |α|d(u,v) for all u,v ∈V and α ∈ R.

Then we can define the norm on V as ∥v∥= d(v,0) for all v ∈V .

Then a function ∥−∥ : V → R that sends v to ∥v∥ is called a norm on V if it satisfies:
1. Positive-definiteness: ∥v∥ ≥ 0 for all v ∈V with equality if and only if v = 0;
2. Homogeneity: ∥αv∥= |α|∥v∥ for all v ∈V and α ∈ R;
3. Triangle Inequality: ∥u+ v∥ ≤ ∥u∥+∥v∥ for all u,v ∈V .

We can use the norm with the properties above to define the distance function by d(x,y) = ∥x− y∥.

Theorem 8.1 — Parallelogram Law. The parallelogram law states that the sum of squares of
the lengths of the four sides of a parallelogram equals the sum of squares of the lengths of the
two diagonals, i.e., with the following figure:

u+ vu− v

u

v

we have:

∥u+ v∥2 +∥u− v∥2 = 2∥u∥2 +2∥v∥2
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Proposition 8.1 An inner product on V is equivalence to a norm structure on V which satisfies the
parallelogram law.

Proof. (⇒) Let (V,⟨−,−⟩) be a Euclidean space. Then we can define the norm on V as ∥v∥ =√
⟨v,v⟩ for all v ∈V . Then we have:
1. Positive-definiteness: ∥v∥=

√
⟨v,v⟩ ≥ 0 for all v ∈V with equality if and only if v = 0;

2. Homogeneity: ∥αv∥=
√
⟨αv,αv⟩=

√
α2⟨v,v⟩= |α|∥v∥ for all v ∈V and α ∈ R;

3. Triangle Inequality: By Cauchy-Schwarz inequality, we have:

∥u+ v∥=
√
⟨u+ v,u+ v⟩=

√
⟨u,u⟩+ ⟨v,v⟩+ ⟨u,v⟩+ ⟨v,u⟩

=
√
∥u∥2 +∥v∥2 +2⟨u,v⟩

≤
√
∥u∥2 +∥v∥2 +2∥u∥∥v∥

=
√

(∥u∥+∥v∥)2 = ∥u∥+∥v∥

Therefore, the triangle inequality holds.
4. Parallelogram Law: We have:

∥u+ v∥2 +∥u− v∥2 = ⟨u+ v,u+ v⟩+ ⟨u− v,u− v⟩
= ⟨u,u⟩+ ⟨v,v⟩+ ⟨u,v⟩+ ⟨v,u⟩+ ⟨u,u⟩+ ⟨v,v⟩−⟨u,v⟩−⟨v,u⟩
= 2⟨u,u⟩+2⟨v,v⟩= 2∥u∥2 +2∥v∥2

(⇐) We define the inner product for all u,v ∈V as follows:

⟨u,v⟩= 1
2
(
∥u+ v∥2−∥u∥2−∥v∥2)

Then we check the three properties of inner product:
1. Bilinearity: For all u,v,w ∈ V , we have to show that ⟨u+w,v⟩ = ⟨u,v⟩+ ⟨w,v⟩, which is

equivalent to show that:

∥u+w+ v∥2−∥u+w∥2−∥v∥2 = ∥u+ v∥2−∥u∥2−∥v∥2 +∥w+ v∥2−∥w∥2−∥v∥2

⇐⇒ ∥u+w+ v∥2 +∥u∥2 +∥w∥2 +∥v∥2 = ∥u+w∥2 +∥u+ v∥2 +∥w+ v∥2

Then we may consider x = u+w and y = v+w, and x′ = u+ v+w and y′ = w, and we have

∥u+ v+2w∥2 +∥u− v∥2 = 2∥u+w∥2 +2∥v+w∥2

∥u+ v+2w∥2 +∥u+ v∥2 = 2∥u+ v+w∥2 +2∥w∥2

Then we have

∥u− v∥2−∥u+ v∥2 = 2∥u+w∥2 +2∥v+w∥2−2∥u+ v+w∥2−2∥w∥2

Moreover, by the parallelogram law on u− v, we have

2∥u∥2 +2∥v∥2−2∥u+ v∥2 = 2∥u+w∥2 +2∥v+w∥2−2∥u+ v+w∥2−2∥w∥2

⇐⇒ ∥u+ v+w∥2 +∥u∥2 +∥v∥2 +∥w∥2 = ∥u+w∥2 +∥v+w∥2 +∥u+ v∥2

Hence, additivity in the first argument holds. We can show the additivity in the second
argument similarly. For homogeneity, we may consider the following steps:

• Prove natural number homogeneity
• Prove reciprocal of natural number homogeneity
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• Prove Cauchy-Schwarz inequality
• Prove that for any λ ∈ R, every r ∈Q, we have:

|λ ⟨u,v⟩−⟨λu,v⟩|= |(λ − r)⟨u,v⟩−⟨(λ − r)u,v⟩| ≤ 2|λ − r|∥u∥∥v∥

• Hence, prove real number homogeneity by taking limit on both sides as r→ λ .
2. Symmetry: For all u,v ∈V , we have:

⟨u,v⟩= 1
2
(
∥u+ v∥2−∥u∥2−∥v∥2)

=
1
2
(
∥v+u∥2−∥v∥2−∥u∥2)= ⟨v,u⟩

3. Positive-definiteness: For all v ∈V , we have:

⟨v,v⟩= 1
2
(
∥v+ v∥2−∥v∥2−∥v∥2)= 1

2
(4∥v∥2−2∥v∥2) = ∥v∥2 ≥ 0

Thus, ⟨−,−⟩ is an inner product on V . ■

Theorem 8.2 — Cauchy-Schwarz Inequality. Let (V,⟨−,−⟩) be a Euclidean space. Then for
all u,v ∈V , we have:

|⟨u,v⟩| ≤ ∥u∥∥v∥

with equality if and only if u and v are linearly dependent.

Proof. Let f (t) = ∥tu+ v∥2 = ⟨tu+ v, tu+ v⟩ = t2∥u∥2 + 2t⟨u,v⟩+ ∥v∥2 ≥ 0 for all t ∈ R. Then
we have f (t)≥ 0 for all t ∈ R. For u = 0, the inequality holds trivially. For u ̸= 0, the quadratic
function f (t) has at most one real root, so its discriminant is less than or equal to zero:

∆ = 4⟨u,v⟩2−4∥u∥2∥v∥2 ≤ 0 =⇒ ⟨u,v⟩2 ≤ ∥u∥2∥v∥2

■

Definition 8.8 If both u,v ∈V are non-zero vectors in a Euclidean space (V,⟨−,−⟩), then the
angle θ between u and v is defined as:

θ = arccos
(
⟨u,v⟩
∥u∥∥v∥

)
Moreover, if ⟨u,v⟩= 0, then we say that u and v are orthogonal.
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8.3 Orthogonality

Let V be a Euclidean space with inner product ⟨−,−⟩ and W ⊆ V is a subspace of V . Then we
claim that W inherits an Euclidean structure from ⟨−,−⟩ in V . We can simply restrict the inner
product ⟨−,−⟩ on V to W :

W ×W V ×V R

⟨−,−⟩

⟨−,−⟩

Note that the restriction ⟨−,−⟩ is still an inner product on W . Also, the positive-definiteness of
⟨−,−⟩ implies that ⟨−,−⟩ is non-degenerate, i.e., the map ⟨−,−⟩^ : W →W ∗ is isomorphism.
Note that W and W ∗ have the same dimension and it has a trivial kernel: ⟨u,−⟩W = 0 implies
⟨u,u⟩W = 0 implies u = 0. Now, suppose w = (w1, · · · ,wk) is a basis of W and w∗ = (w∗1, · · · ,w∗k)
is the dual basis of W ∗, then we have the following diagram:

0 Ker(λw) V Rk 0

W W ∗

wi ⟨wi,−⟩

λw

s

⟨−,−⟩^
[−]w∗

where λw =

⟨w1,−⟩
...

⟨wk,−⟩

, and s is a section of λw with image W . Then we have the decomposition:

V = Im(s)⊕Ker(λw) =W ⊕Ker(λw)

Note that it is an internal direct sum. Then we define the orthogonal complement of W in V as
follows.

Definition 8.9 — Orthogonal Complement. The orthogonal complement of W in V , denoted
by W⊥, is defined as:

W⊥ = {v ∈V | ⟨v,w⟩= 0 for all w ∈W}= {v ∈V | ⟨v,wi⟩= 0 for all basis wi ∈W}

Then we have the decomposition:

V =W ⊕W⊥

Then any vector v ∈ V can be uniquely decomposed as v = w+w⊥ with w = projW (v) ∈W
and w⊥ = projW⊥(v) ∈W⊥. The map projW : V →W is called the orthogonal projection onto W
along W⊥. Take a look at the following figure:
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W

W⊥

v⃗

w=
pro

jW
v

w ⊥
=
projW

⊥ v
Then we have the following properties of the orthogonal projection:

1. (projW )2 = projW ;
2. Im(projW ) =W ;
3. Ker(projW ) =W⊥;
4. projW +projW⊥ = idV .

Definition 8.10 — Orthonormal Basis. A basis v is orthogonal if ⟨vi,v j⟩= 0 for all i ̸= j. An
orthogonal basis is orthonormal if ∥vi∥= 1 for all i.

Then we have the following proposition.

Proposition 8.2 For any Euclidean space V with inner product, there exists an orthonormal basis
of V . Moreover, there exists a linear isometric isomorphism between V and Rn with the standard
inner product, the dot product.

Note that (Rn, ·) is up to isomorphism the only Euclidean space with dimension n, where ·
denotes the standard dot product.

Moreover, if w = (w1,w2, · · · ,wk) is an orthonormal basis of W , then

projW u =
k

∑
i=1
⟨wi,u⟩wi

for all u ∈V . In case w is orthogonal but not orthonormal, then we have:

projW u =
k

∑
i=1

⟨wi,u⟩
⟨wi,wi⟩

wi
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8.4 Gram-Schmidt Process
Let w = (w1,w2, · · · ,wk) be an orthonormal basis of W ⊆V . Then we have:

x =
k

∑
i=1
⟨wi,x⟩wi︸ ︷︷ ︸
∈W

+x−
k

∑
i=1
⟨wi,x⟩wi︸ ︷︷ ︸
∈W⊥

= projW x+projW⊥x.

To show that projW⊥x ∈W⊥, it suffices to show that ⟨w j,projW⊥x⟩= 0 for all 1≤ j ≤ k:

⟨w j,projW⊥x⟩= ⟨w j,x−
k

∑
i=1
⟨wi,x⟩wi⟩

= ⟨w j,x⟩−
k

∑
i=1
⟨wi,x⟩⟨w j,wi⟩

= ⟨w j,x⟩−⟨w j,x⟩= 0

Note that the key step is to use the bilinearity of the inner product and the orthonormality of w.
Now, given any basis x = (x1,x2, · · · ,xn) of V , we can use the Gram-Schmidt process to

construct an orthonormal basis w = (w1,w2, · · · ,wn) of V by inductive argument. The idea is: We
have Vn ⊃ Vn−1 ⊃ ·· · ⊃ V2 ⊃ V1 ⊃ V0 = {0} with the dimension n,n− 1, · · · ,2,1,0 respectively.
Then we have w1 as the orthonormal basis of V1, then we can extend it to w1,w2 as the orthonormal
basis of V2, and so on and so forth until we reach Vn =V .

Then we consider the first two cases to illustrate the idea. Let v1 = u1. Then we have w1 =
v1
∥v1∥

as the orthonormal basis of V1 = Span{u1}. Then we want to find the w2 such that w1,w2 is the
orthonormal basis of V2 = Span{u1,u2}. We can consider the following diagram:

V1

V⊥1 x2

v1

x1

v2

w1

w2

projV
1 x

2

x2−
pro

jV1
x2

Then v2 = x2−projV1
x2 = x2−⟨w1,x2⟩w1 is orthogonal to w1. Note that w1 is normalised. Then

we can normalise v2 to get w2 =
v2
∥v2∥ . Therefore, w1,w2 is the orthonormal basis of V2. Then for

general k-th step, we have:

vk = xk−
k−1

∑
i=1
⟨wi,xk⟩wi = xk−

k−1

∑
i=1

⟨vi,xk⟩
⟨vi,vi⟩

vi, wk =
vk

∥vk∥

given that w1,w2, · · · ,wk−1 is the orthonormal basis of Vk−1 = Span{x1,x2, · · · ,xk−1} and the
orthogonal basis of Vk−1, v1,v2, · · · ,vk−1.

Then there is a useful corollary of the Gram-Schmidt process, the QR Decomposition.
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Let V be a Euclidean space. We can interpret it as (Rn, ·) up to isomorphism. Then we have a
basis (⃗x1, x⃗2, · · · , x⃗n) of V and we can form an invertible matrix A whose columns are the vectors
x⃗1, x⃗2, · · · , x⃗n, i.e.,

A =

 | | |
x⃗1 x⃗2 · · · x⃗n

| | |


Then we have an orthogonal basis (⃗v1, · · · , v⃗n) of V and an orthonormal basis (w⃗1, · · · , w⃗n) obtained
by the Gram-Schmidt process. Then we should have an invertible matrix to convert between bases.
Then what is the matrix to convert from the original basis to the orthonormal basis?

Note that each x⃗k can be expressed as a linear combination of w⃗1, · · · , w⃗k:

x⃗k = v⃗k +
k−1

∑
i=1

⟨⃗vi, x⃗k⟩
⟨⃗vi, v⃗i⟩

v⃗i = ∥⃗vk∥w⃗k +
k−1

∑
i=1
⟨w⃗i, x⃗k⟩w⃗i

Also, we can express x⃗k as follows:

x⃗k =

 | | |
w⃗1 w⃗2 · · · w⃗n

| | |





⟨w⃗1, x⃗k⟩
⟨w⃗2, x⃗k⟩

...
⟨w⃗k−1, x⃗k⟩
∥⃗vk∥

0
...
0


Then we have the matrix equation:

 | | |
x⃗1 x⃗2 · · · x⃗n

| | |


︸ ︷︷ ︸

A

=

 | | |
w⃗1 w⃗2 · · · w⃗n

| | |


︸ ︷︷ ︸

Q


⟨w⃗1, x⃗1⟩ ⟨w⃗1, x⃗2⟩ · · · ⟨w⃗1, x⃗n⟩

0 ⟨w⃗2, x⃗2⟩ · · · ⟨w⃗2, x⃗n⟩

0 0
. . .

...
0 0 0 ⟨w⃗n, x⃗n⟩


︸ ︷︷ ︸

R

which is called the QR Decomposition of A, where Q is an orthogonal matrix and R is an upper-
triangular matrix with positive diagonal entries. However, normally we denote the orthogonal
matrix by O instead of Q and an upper-triangular matrix by U instead of R.
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8.5 Orthogonal Group and Special Orthogonal Group
Let V be a Euclidean space with inner product ⟨−,−⟩. Then we view V as a linear space, and we
have Aut(V ) = GL(V ). If we view V as a Euclidean space, then we have Aut(V ) =O(V )⊆ GL(V ),
where O(V ) is the subgroup of GL(V ) that respects the Euclidean structure, i.e., for all T ∈ O(V ),
we have:

⟨T (u),T (v)⟩= ⟨u,v⟩

for all u,v ∈V , so length and angles are preserved under T . Or equivalently, the following diagram
commutes:

V ×V

V ×V R

⟨−,−⟩T×T

⟨−,−⟩

We can also define the orthogonal group O(n) using this property. Let V = Rn with the dot product.
Then for any A ∈ GLn(R), A ∈ O(n) if and only if A satisfies:

⟨⃗ai, a⃗ j⟩= ⟨A⃗ei, A⃗e j⟩= ⟨⃗ei, e⃗ j⟩= δi j

It is equivalent to say that AT A = In, i.e., AT = A−1. Therefore, we have:

O(n) = {A ∈ GLn(R) | AT A = In}

Note that det (AT ) = det (A)T = det (A). Therefore, we have det (A)2 = 1 for all A ∈ O(n), i.e.,
det (A) =±1.

Then consider the following exact sequence:

1 SL(V ) GL(V ) R× 1det

where R× = GL1(R) = R\{0} is the multiplicative group of non-zero real numbers. As for any
automorphism A∈GL(V ), we have a determinant det A∈R×, which is surjective. SL(V ) is defined
as the kernel of the determinant map, i.e., SL(V ) = {A ∈ GL(V ) | det A = 1}.

Similarly, we have the special orthogonal group SO(V ) as the subgroup of O(V ) with determi-
nant 1:

SO(V ) = {A ∈ O(V ) | det A = 1}
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8.6 Matrix Representation of Inner Products
Let V be a Euclidean space with inner product ⟨−,−⟩. Then we can choose a basis v=(v1,v2, · · · ,vn)
of V . Then we have

x = xivi =


x1

x2

...
xn

 , y = yivi =


y1

y2

...
yn


Then the inner product ⟨x,y⟩ can be represented as:

⟨x,y⟩= xiy j⟨vi,v j⟩= xT
ωy = x · (ωy)

where we let ω = [⟨vi,v j⟩] be the matrix representation of the inner product with respect to the
basis v. Then ⟨−,−⟩= ·ω−. To find the canonical form of the inner product, we left it to the next
chapter.

Proposition 8.3 — Spectral Theorem for Real Symmetric Matrices. Let A be a n× n real
symmetric matrix. Then there exists an orthogonal matrix O and a diagonal matrix D such that:

A = ODO−1 = ODOT

where the entries of D are the eigenvalues of A. Or equivalently, there exists an orthonormal basis
of Rn consisting of eigenvectors of A.

To prove this proposition, we would use the result in Hermitian spaces, so we leave the proof to
the next chapter.





9. Hermitian Spaces

“In Mathematics, one of the great ideas is
anytime you are interested in vector space
over real numbers, but real number is not
as nice as complex numbers. So you should
turn the problem into complex case, then
use the result there to do it in real case.”

GUOWU MENG

9.1 Hermitian Forms and Unitary Groups

9.1.1 Hermitian Forms

Similar to the definitions in Euclidean spaces, we can define Hermitian forms and Hermitian spaces
as follows.

Definition 9.1 — Hermitian Form. Let V be a complex vector space. A Hermitian form or
Hermitian product on V is a map ⟨−,−⟩ : V ×V → C such that the following properties hold:

1. Sesquilinearity: For all u,v ∈V and α ∈ C, we have:
a. Biadditivity
b. ⟨u,αv⟩= α⟨u,v⟩
c. ⟨αu,v⟩= α⟨u,v⟩

2. Conjugate Symmetry: For all u,v ∈V , we have:

⟨u,v⟩= ⟨v,u⟩= ⟨u,v⟩†

The dagger symbol † is defined as ⟨u,v⟩† = ⟨v,u⟩.
3. Positive-Definiteness: For all v ∈V , we have:

⟨v,v⟩ ≥ 0

When the positive-definiteness property becomes non-degeneracy, i.e., ⟨v,v⟩= 0 implies v = 0,
then the Hermitian form is called a pseudo Hermitian form.
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We can also define the norm of a vector v ∈V as:

∥v∥=
√
⟨v,v⟩

The other four properties of norm is the same as in Euclidean spaces. Moreover the Cauchy-Schwarz
inequality is as follows:

|⟨u,v⟩| ≤ ∥u∥∥v∥

for all u,v ∈V , with equality if and only if u and v are linearly dependent.

Proof. Let f (t) = ∥tu+v∥2 = ⟨tu+v, tu+v⟩= t2∥u∥2+2ℜ(⟨u,v⟩)t+∥v∥2 ≥ 0 for all t ∈R. Then
we have f (t)≥ 0 for all t ∈ R. For u = 0, the inequality holds trivially. For u ̸= 0, the quadratic
function f (t) has at most one real root, so its discriminant is less than or equal to zero:

∆ = 4(ℜ(⟨u,v⟩))2−4∥u∥2∥v∥2 ≤ 0 =⇒ (ℜ(⟨u,v⟩))2 ≤ ∥u∥2∥v∥2 =⇒ |ℜ(⟨u,v⟩)| ≤ ∥u∥∥v∥

Note that ⟨u,v⟩= |⟨u,v⟩|eiθ for some θ ∈ R. Then we have:

⟨e−iθ u,v⟩= e−iθ ⟨u,v⟩= |⟨u,v⟩|

Therefore, we have:

|⟨u,v⟩|= |ℜ(⟨e−iθ u,v⟩)| ≤ ∥e−iθ u∥∥v∥= ∥u∥∥v∥

■

The sesquilinear map ⟨−,−⟩ can be defined as a bilinear map V ×V → C, where V is the
complex conjugate vector space of V , or linear map V⊗V →C. The complex conjuage vector space
V is defined as the same set as V with the same addition operation, but the scalar multiplication is
defined as:

C×V →V , (α,v) 7→ αv

Then we have the following examples:

■ Example 9.1 We define the standard Hermitian form on Cn as:

⟨⃗u, v⃗⟩= u⃗†⃗v = u⃗
T

v⃗

for all u⃗, v⃗ ∈ Cn. It is straightforward to verify that it satisfies all the properties of Hermitian forms.
For example, the positive-definiteness property holds since:

u⃗†⃗u =
n

∑
i=1

uiui =
n

∑
i=1
|ui|2 ≥ 0

■

Then a complex linear space V with an Hermitian form ⟨−,−⟩ is called a Hermitian space.
Also, the model / standard Hermitian space is (Cn,⟨−,−⟩) with the standard Hermitian form, that
is, the inner product defined above.

Let V be a Hermitian space with Hermitian form ⟨−,−⟩. Then we say u,v ∈V are orthogonal
if ⟨u,v⟩ = 0. Similar to the Euclidean case, we can define orthogonal complement, orthogonal
projection, orthonormal basis, and Gram-Schmidt process in Hermitian spaces. We also have the
decomposition V =W⊥⊕W for any subspace W ⊆V .

Similarly, there is only one Hermitian space up to isomorphism with dimension n, that is,
(Cn,⟨−,−⟩) with the standard Hermitian form, i.e., for any Hermitian space V with dimension n,
there exists a linear isometric isomorphism between V and (Cn,⟨−,−⟩).
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9.1.2 Unitary Groups
Similar to the orthogonal groups in Euclidean spaces, we can define unitary groups in Hermitian
spaces as the automorphism groups that respect the Hermitian structure. Then we have

U(n) = {A ∈ GLn(C) | A†A = I}

where A† = AT is the conjugate transpose of A. Note that det (A†) = det (A). Therefore, we have
|det (A)|2 = 1 for all A ∈ U(V ), i.e., |det (A)|= 1. This means U(1) = {z ∈ C | |z|= 1} is the unit
circle in the complex plane. Graphically we have:

Re

Im

1-1

where the unit circle represents U(1) in the complex plane. Also in orthogonal group, the determi-
nant of any orthogonal matrix is either 1 or −1. This is the special case of unitary group when the
entries are real numbers. Also we have the special unitary group SU(n) as the subgroup of U(n)
with determinant 1.

Then we have the following definition similar to orthogonal matrices:

Definition 9.2 — Unitary Matrix. A matrix A ∈ GLn(C) is called a unitary matrix if A†A = In,
i.e., A−1 = A†.

Using similar Gram-Schmidt process in Euclidean spaces, we get the following QR decomposition
in Hermitian spaces:

A = QR

where Q is a unitary matrix and R is an upper-triangular matrix with positive real diagonal entries.
However, normally we denote the unitary matrix by U instead of Q. One reason why others use QR
instead is to distinguish the same notation on unitary and upper-triangular matrices in Hermitian
spaces and orthogonal and upper-triangular matrices in Euclidean spaces.

9.1.3 Matrix representation of Hermitian forms
Then we have the matrix representation of Hermitian forms as follows.

Let V be a Hermitian space with Hermitian form ⟨−,−⟩. Then we can choose a basis v =
(v1,v2, · · · ,vn) of V . Then we have

ω = [⟨vi,v j⟩]

Note that ω is a Hermitian matrix, i.e., ω† = ω . Then we claim that if A and Ã are two matrix
representations of the Hermitian form ⟨−,−⟩with respect to two different bases v and ṽ respectively,
then there exists an invertible matrix P ∈ GLn(C) such that:

Ã = P†AP
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where P is the change-of-basis matrix from v to ṽ. Or equivalently,

Hn(C)×GLn(C)→ Hn(C), (A,P) 7→ P†AP

where Hn(C) is the real linear space of Hermitian matrix of order n. The reason why it is real, as it
is not closed under multiplication by complex numbers. Take n = 1, then H1(C) = R, which is not
closed under multiplication by complex numbers.
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9.2 Self-Adjoint Operators and Unitary Operators
Let V be a Hermitian space with Hermitian form ⟨−,−⟩. Then we have the following defini-
tions.

Definition 9.3 — Self-Adjoint Operator. A linear operator T : V →V is called a self-adjoint
operator or Hermitian operator if:

⟨Tu,v⟩= ⟨u,T v⟩

for all u,v ∈V . Or equivalently, T = T †, where T † is the adjoint operator of T defined as the
unique operator satisfying:

⟨Tu,v⟩= ⟨u,T †v⟩

Definition 9.4 — Unitary Operator. A linear operator U : V →V is called a unitary operator
if:

⟨Uu,Uv⟩= ⟨u,v⟩

for all u,v ∈V . Or equivalently, U† =U−1.

Definition 9.5 — Normal Operator. A linear operator N : V →V is called a normal operator
if:

N†N = NN†

Proposition 9.1 For T : V →W a linear operator between two Hermitian spaces V and W , there
also exists a unique adjoint operator T † : W →V satisfying:

⟨Tu,w⟩W = ⟨u,T †w⟩V

Proof. We can reduce the problem to Cn and Cm with standard Hermitian forms by choosing
orthonormal bases of V and W . Then we have T represented by a matrix A ∈Mm×n(C). Then we
propose there is a matrix B ∈Mn×m(C) such that for all e⃗i ∈ Cn and f⃗ j ∈ Cm, we have:

⟨A⃗ei, f⃗ j⟩= (A⃗ei)
† f⃗ j = e⃗†

i A† f⃗ j = e⃗T
i A† f⃗ j

which is the (i, j)-th entry of A†. On the other hand, we have:

⟨⃗ei,B f⃗ j⟩= e⃗†
i (B f⃗ j) = e⃗T

i B f⃗ j

which is the (i, j)-th entry of B. Therefore, we have B = A†. This proves the existence of the adjoint
operator. The uniqueness is straightforward. ■

Proposition 9.2 Let T be a self-adjoint operator on a Hermitian space V . Then we have the
following properties:

1. All eigenvalues of T are real numbers.
2. Eigenspaces of T are mutually orthogonal, i.e., if u and v are eigenvectors of T corresponding

to distinct eigenvalues, then ⟨u,v⟩= 0.
3. V is the direct sum of the eigenspaces of T .

So T is completely reducible.

Proof. Given that T † = T , we have:
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1. Let λ ̸= 0 be an eigenvalue of T , so there exists a non-zero eigenvector v such that T v = λv.
Then we have:

⟨T v,v⟩= ⟨v,T †v⟩= ⟨v,T v⟩

which implies that:

λ ⟨v,v⟩= λ ⟨v,v⟩

Since v ̸= 0, we have ⟨v,v⟩> 0. Therefore, we have λ = λ , i.e., λ is a real number.
2. Let λ1 and λ2 be two distinct eigenvalues of T with corresponding eigenvectors v1 and v2.

Then we have:

⟨T v1,v2⟩= ⟨v1,T †v2⟩

which implies that:

λ1⟨v1,v2⟩= λ2⟨v1,v2⟩

Since λ1 ̸= λ2, we have ⟨v1,v2⟩= 0.
3. We know that Vλ1(T )⊕·· ·⊕Vλk(T )⊆V , where the spectrum of T , σ(T ) = {λ1,λ2, · · · ,λk}.

To show the equality, we let W =Vλ1(T )⊕·· ·⊕Vλk(T ) and consider the orthogonal comple-
ment W⊥. Since T is self-adjoint, we have W⊥ is T -invariant, i.e., for all w⊥ ∈W⊥, we have
Tw⊥ ∈W⊥. As for all w ∈W and w⊥ ∈W⊥, we have:

⟨Tw⊥,w⟩= ⟨w⊥,T †w⟩= ⟨w⊥,Tw⟩= 0

where Tw∈W since W is T -invariant. Then we claim that W⊥ = {0}. If not, then we have an
eigenvector w⊥ ∈W⊥ with eigenvalue λ , such that there exists a map T̃ : W⊥→W⊥ defined
by T̃ (w⊥) = T (w⊥). Then T̃ w⊥ = λw⊥ and T̃ w⊥ = Tw⊥ by definition. So we know that λ

is an eigenvalue of T , i.e., λ ∈ σ(T ). Say λ = λ1. Then we have w⊥ ∈Vλ1(T )⊆W , which
contradicts the assumption that w⊥ ∈W⊥. Therefore, we have W⊥ = {0}, which implies
that V =W .

■

Proposition 9.3 Let T be a unitary operator on a Hermitian space V . Then we have the following
properties:

1. All eigenvalues of T are complex numbers with absolute value 1.
2. Eigenspaces of T are mutually orthogonal, i.e., if u and v are eigenvectors of T corresponding

to distinct eigenvalues, then ⟨u,v⟩= 0.
3. V is the direct sum of the eigenspaces of T .

So T is completely reducible.

Proof. Given that T †T = T T † = 1V , we have:
1. Let λ ̸= 0 be an eigenvalue of T , so there exists a non-zero eigenvector v such that T v = λv.

Then we have:

⟨T v,v⟩= ⟨v,T †v⟩

which implies that:

λ ⟨v,v⟩= λ
−1⟨v,v⟩ =⇒ (λ ·λ −1)⟨v,v⟩= 0

Since v ̸= 0, we have ⟨v,v⟩> 0. Therefore, we have λ ·λ = |λ |2 = 1, i.e., |λ |= 1.
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2. Let λ1 and λ2 be two distinct eigenvalues of T with corresponding eigenvectors v1 and v2.
Then we have:

⟨T v1,v2⟩= ⟨v1,T †v2⟩

which implies that:

λ1⟨v1,v2⟩= λ2
−1⟨v1,v2⟩ =⇒ (λ1λ2−1)⟨v1,v2⟩= 0

Since λ1 ̸= λ2, we have ⟨v1,v2⟩= 0.
3. We know that Vλ1(T )⊕·· ·⊕Vλk(T )⊆V , where the spectrum of T , σ(T ) = {λ1,λ2, · · · ,λk}.

To show the equality, we let W = Vλ1(T )⊕·· ·⊕Vλk(T ) and consider the orthogonal com-
plement W⊥. Since T is unitary, we have W⊥ is T -invariant, i.e., for all w⊥ ∈W⊥, we have
Tw⊥ ∈W⊥. As for all w ∈W and w⊥ ∈W⊥, we have w′ = Tw ∈W and:

⟨Tw⊥,w′⟩= ⟨Tw⊥,Tw⟩= ⟨w⊥,w⟩= 0

where the second equality holds since T is unitary. Then we claim that W⊥ = {0}. If
not, then we have an eigenvector w⊥ ∈W⊥ with eigenvalue λ , such that there exists a
map T̃ : W⊥→W⊥ defined by T̃ (w⊥) = T (w⊥). Then T̃ w⊥ = λw⊥ and T̃ w⊥ = Tw⊥ by
definition. So we know that λ is an eigenvalue of T , i.e., λ ∈ σ(T ). Say λ = λ1. Then we
have w⊥ ∈ Vλ1(T ) ⊆W , which contradicts the assumption that w⊥ ∈W⊥. Therefore, we
have W⊥ = {0}, which implies that V =W .

■
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9.3 Spectral Theorem
The canonical matrix representation of self-adjoint operator is a real diagonal matrix, and the
canonical matrix representation of unitary operator is a diagonal matrix with entries on the unit
circle in the complex plane. This is stated in the following spectral theorem.

Theorem 9.1 — Spectral Theorem. A Hermitian or unitary operator T on a Hermitian space V
is “diagonalisable” by a unitary matrix in the following sense: Choose an orthonormal basis of
V such that T is represented by a Hermitian matrix A. Then there is a unitary matrix U and a
diagonal matrix D such that:

A =UDU−1 =UDU†

Note that the diagonal entries of D are all real numbers if T is Hermitian, and the diagonal entries
of D are all complex numbers with modulus 1 if T is unitary. Moreover, D is the cononical form of
T , i.e., there exists a set of distinct complex eigenvalues {λ1,λ2, · · · ,λk} and a set of non-trivial
complex linear subspaces {Vλ1 ,Vλ2 , · · · ,Vλk} such that:

V =Vλ1⊕Vλ2⊕·· ·⊕Vλk

with respect to which T has the decomposition:

T = λ11Vλ1
+λ21Vλ2

+ · · ·+λk1Vλk

If U is a unitary matrix, then the columns of U form an orthonormal basis of Cn. Moreover,
the columns of U are eigenvectors of A corresponding to the eigenvalues on the diagonal of D. As
Cn =

⊕
i Eλi(A), where λi are the eigenvalues of A, we have found an orthonormal basis consisting

of eigenvectors of A.
If V is a complex linear space, then V is a real linear space with dimension doubled and we

write VR for the underlying real linear space of V . Then we losed some information from V to
VR. Then we add an extra structure J : VR→ VR defined by J (v) = iv for all v ∈ V . Then we
have J 2 =−1VR . Such a structure is called an complex structure on VR. Moreover, we have the
following commutative diagram:

C×V V

R×VR

complex scalar mult.

ι×id real scalar mult.

For example, we can write (a + bi)v = av + bJ (v) for all a + bi ∈ C and v ∈ V . Note that
as (det J )2 = (−1)dim RV , we have dim RV is even. The dimension doubled as we consider
v = (v1,v2, · · · ,vn) ∈V as vR = (v1,v2, · · · ,vn,J v1,J v2, · · · ,J vn) ∈VR.

Then we can do the reverse process. Let W be a real linear space. The complexification of W ,
denoted by WC, is defined to be the following complex linear space:

W ⊗RC

Then we have the following natural identification:

W ⊆W ⊗RC=WC

w 7→ w⊗R 1

Then W is a real linear subspace of WC. Note that dim CWC = dim RW .
There are two corollories of the spectral theorem as follows.
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Corollary 9.1 If A is a real symmetric matrix, then A can be diagonalised by an orthogonal
matrix, i.e., there is an orthogonal matrix O and a diagonal matrix D such that:

A = ODO−1 = ODOT

Proof. As real symmetric matrices are Hermitian matrices, by the spectral theorem for Hermitian
matrices, we know that any real symmetric matrix can be diagonalised by a unitary matrix, i.e.,
A = U†DU for some unitary matrix U and real diagonal matrix D. Note that the entries of U
are complex numbers in general. Then we should try to find an orthogonal matrix O such that
A = OT DO. Note that for any real eigenvalue λ of A, the system (A−λ I)⃗v = 0 has real coefficients.
Then if v⃗ = x⃗+ i⃗y is a complex solution, then we have:

(A−λ I)⃗v = (A−λ I)⃗x+ i(A−λ I)⃗y = 0

which implies that both x⃗ and y⃗ are real solutions. Therefore, we can always find a real eigenvector
corresponding to each real eigenvalue of A. Then we can choose an orthonormal basis of Rn

consisting of real eigenvectors of A by Gram-Schmidt process. Let O be the matrix whose columns
are the orthonormal basis of real eigenvectors. Then we have O is an orthogonal matrix and
A = OT DO. Therefore, we conclude that any real symmetric matrix A can be diagonalised by an
orthogonal matrix. ■

Corollary 9.2 The canonical form of a orthogonal matrix O of order n is of the following form:
Rθ1Jq

Rθ2

. . .
Rθk

Ip


where Rθi =

[
cosθi −sinθi

sinθi cosθi

]
is the rotation matrix of angle θi, p = 1 if n is odd and p = 0 if n

is even, with n = 2k+ p, and Jq is I2 if det O = 1 and
[
−1 0
0 1

]
if det O =−1.

Corollary 9.3 The matrix representation H of the Hermitian form on a complex vector space V
with respect to a basis v is a Hermitian matrix. Moreover, there exists a unitary matrix U and a
real diagonal matrix D such that:

H =UDU†

Then the Hermitian form can be represented as:

⟨x,y⟩= x†Hy = x†UDU†y = (U†x)†D(U†y)

Moreover, D can be expressed as:

D =

λ

−µ

0


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where λ =

λ1
. . .

λr

 and µ =

µ1
. . .

µs

 with λi,µ j > 0 for all i, j. The pair (r,s) is

called the signature of the Hermitian form. We may further decompose the Hermitian form as:

D =

√λ

−√µ

0

Ir

−Is

0

√λ

−√µ

0

=U ′Ir,sU ′†

where
√

λ =


√

λ1
. . . √

λr

 and
√

µ =


√

µ1
. . .
√

µs

.

So the Hermitian form can be represented as:

⟨x,y⟩= (U ′†U†x)†Ir,s(U ′†U†y)

In summary,
• Any Hermitian form on a complex vector space can be represented by a Hermitian matrix.
• The canonical representation of Hermitian form is Ir,s up to a unitary change of basis. If the

Hermitian form is positive-definite, then the canonical representation is In.
• Any symmetric 2-form ω on a real vector space can be represented by a real symmetric

matrix.

• The canonical representation of symmetric 2-form is

Ir

−Is

0

 up to an orthogonal

change of basis. If the symmetric 2-form is positive-definite, then the canonical representation
is In.

• The canonical representation of pseudo inner product is
[

Ip

−Iq

]
up to an orthogonal

change of basis, with n = p+ q. Then we call (p,q) the signature of the pseudo inner
product.

• V is a real vector space of dimension n. Then up to isomorphism, there are n+1 different
pseudo inner products on V , corresponding to the signatures (n,0),(n− 1,1), · · · ,(1,n−
1),(0,n).

• Any pseudo inner product V is isomorphic to (Rn, Ip,q) = Rp,q. As it sends (x,y)→ x1y1 +
· · ·+ xpyp− xp+1yp+1−·· ·− xnyn.

The set of inner products on a real vector space V of dimension n is isomorphic to the orbit
space of the right action of group O(n) on GLn(R) GLn(R)/O(n), where O(n) is the orthogonal
group of order n.

GLn(R)×O(n)→ GLn(R), (X ,g) 7→ X ·g

As GLn(R) and O(n) have the same homotopy type, the orbit space GLn(R)/O(n) is trivially
contractible. We may consider the following example:

GL1(R) = R× O(1) = {−1,1}

Then we have:

GL1(R)/O(1)∼= R>0

Similarly, the set of Hermitian forms on a complex vector space V of dimension n is isomorphic
to the orbit space GLn(C)/U(n), where U(n) is the unitary group of order n. Again, it is contractible.
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We have a simple introduction to the Lorentz inner product on R4. It sends (x,y) ∈ R4×R4 to

x · y = x0y0− x⃗ · y⃗, where x =
[

x0
x⃗

]
and y =

[
y0
y⃗

]
.





10. Symplectic Vector Spaces

By now, you should feel comfortable
switching between the 2 pictures. One is
the abstract picture. Another is a concrete
presentation.

GUOWU MENG

10.1 Symplectic Forms
Let (V,⟨−,−⟩) be a Hermitian space. Then we have:

R

V ×V C

R

⟨−,−⟩

g(−,−)

ω

ℜ

ℑ

where g(−,−) is the real part of the Hermitian product and ω is the imaginary part of the Hermitian
product. Both of them are 2-forms on VR. ω is called a symplectic form on V .

Definition 10.1 — Symplectic form. A symplectic form on a real vector space V is a non-
degenerate, skew-symmetric 2-form ω : V ×V → R.

A symplectic vector space is a pair (V,ω).
We have J ∈ End(VR) defined as the scalar multiplication by i on VR, such that J 2 =−1VR .
Note that we have three structures on VR:
• Complex structure: J : VR→VR with J 2 =−1VR ;
• Symplectic structure: ω : VR×VR→R is a non-degenerate, skew-symmetric bilinear form;
• Riemannian structure: g : VR×VR→ R is a positive-definite, symmetric bilinear form.
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Then we have the following equation:

⟨x,y⟩= g(x,y)+ iω(x,y)

for all x,y ∈VR. Moreover, we have:

⟨ix,y⟩=−i⟨x,y⟩ =⇒ g(J x,y)+ iω(J x,y) = ω(x,y)− ig(x,y)

for all x,y ∈VR. This implies that:

ω(x,y) = g(J x,y), g(x,y) =−ω(x,J y)

Consider the following equation:

⟨ix, iy⟩= ⟨x,y⟩ =⇒ g(J x,J y)+ iω(J x,J y) = g(x,y)+ iω(x,y)

for all x,y ∈VR. This implies that:

g(J x,J y) = g(x,y), ω(J x,J y) = ω(x,y)

for all x,y ∈VR. Or equivalently, we have J ∗g = g and J ∗ω = ω .
Note that the Hermitian product is positive-definite, so we have

⟨x,x⟩> 0 =⇒ g(x,x)> 0,ω(x,x) = 0

for all x ∈VR \{0}. If x = 0, then we have ⟨0,0⟩= 0, g(0,0) = 0 and ω(0,0) = 0. Also, we have

⟨y,x⟩= ⟨x,y⟩ =⇒ g(y,x)− iω(y,x) = g(x,y)+ iω(x,y)

for all x,y ∈VR. This implies that:

g(x,y) = g(y,x), ω(x,y) =−ω(y,x)

for all x,y ∈VR, i.e., g is symmetric and ω is skew-symmetric.
As ω(x,y) = g(J x,y) for all x,y ∈VR, so ω is non-degenerate if g is non-degenerate. Then we

have the following commutative diagram:

VR V ∗R

VR

J

ω^

g^

As ω^(x) = g^(J x) for all x ∈VR.
Then we can recover a Hermitian space from a real vector space with these structures. Let V be

a real vector space. If any two of the above three structures are given and compatible, the third will
be determined. Moreover, we have a Hermitian product on V on the complex linear space (V,J )
where iv = J v for all v ∈V .

The meaning of being compatible pair:
• (g,J ) are compatible if J ∗g = g, i.e., J ∈ Aut(W,g) = O(W,g); Then we can define

ω(x,y) = g(J x,y) and ⟨−,−⟩ = g+ iω . We can check that ω is skew-symmetric and
non-degenerate, and ⟨−,−⟩ is a Hermitian product:

ω(y,x) = g(J y,x) = g(JJ y,J x) = g(−y,J x) =−g(J x,y) =−ω(x,y)
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Also, if ω(x,y) = 0 for all y ∈ V , then we have g(J x,y) = 0 for all y ∈ V , which implies
that J x = 0 as g is non-degenerate, i.e., x = 0. Therefore, ω is non-degenerate. As for the
Hermitian product, the sesquilinearity is shown as follows:

⟨ix,y⟩= g(J x,y)+ iω(J x,y) = ω(x,y)− ig(x,y) =−i(g(x,y)+ iω(x,y)) =−i⟨x,y⟩

For the conjugate symmetry, we have:

⟨y,x⟩= g(y,x)+ iω(y,x) = g(x,y)− iω(x,y) = ⟨x,y⟩

for all x,y ∈V . Also, we have:

⟨x,x⟩= g(x,x)+ iω(x,x) = g(x,x)> 0

• (ω,J ) are compatible if J ∗ω = ω , i.e., J ∈ Aut(W,ω) = Sp(W,ω) and −ω(J x,x) ≥ 0
and equality holds if and only if x = 0. Then we can define g(x,y) = −ω(x,J y) and
⟨−,−⟩ = g+ iω . We can check that g is symmetric and positive-definite, and ⟨−,−⟩ is a
Hermitian product:

g(y,x) =−ω(y,J x) =−ω(J y,JJ x) =−ω(J y,−x) =−ω(x,J y) = g(x,y)

Also, as −ω(J x,x) ≥ 0 for all x ∈ V and equality holds if and only if x = 0, we have
g(x,x) ≥ 0 for all x ∈ V and equality holds if and only if x = 0. Therefore, g is positive-
definite. For the Hermitian product, we may use the similar proof as above.

• (g,ω) are compatible if ω(x,y) = g(Ax,y) for some A ∈ End(V ). If A2 =−1, then J = A.
In general, A is skew-symmetric, i.e., g(Ax,y) = g(x,−Ay), as ω is skew-symmetric. Since

AA† is symmetric and positive-definite, we can define J =
√

AA†−1
A, which satisfies that

J 2 =−1, as J commutes with A and
√

AA†. Then we have A =
√

AA†J and let P =
√

AA†.
Therefore, we have:

ω(J x,J y) = g(AJ x,J y) = g(PJJ x,J y) =−g(Px,J y) = g(J Px,y) = g(Ax,y) =ω(x,y).

Also, we have:

−ω(J x,x) =−g(AJ x,x) =−g(PJJ x,x) = g(Px,x)> 0

for all x,y ∈V and x ̸= 0. Then we can define ⟨−,−⟩= g+ iω . We can check that ⟨−,−⟩ is
a Hermitian product by the similar proof as above.

Let V be a vector space over F where char(F) ̸= 2. We define the double D(V ) =V ⊕V ∗. Then
we have a natural symplectic form on D(V ) defined as:

ω((u,α),(v,β )) = α(v)−β (u)

Also D(V ) is called the canonical symplectic vector space associated to V . Then when we
choose a basis {⃗e1, e⃗2, · · · , e⃗n} of V and the dual basis {ê1, ê2, · · · , ên} of V ∗, we have the matrix
representation of ω on D(V ) as:[

ω (⃗ei, e⃗ j) ω (⃗ei, ê j)
ω(êi, e⃗ j) ω(êi, ê j)

]
=

[
0 In

−In 0

]
Also the basis {⃗e1, · · · , e⃗n, ê1, · · · , ên} is called a symplectic basis of D(V ).
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10.2 Matrix Representation and Canonical Form
We may revise all the canonical forms we have learned before as follows.

10.2.1 Linear Maps
Consider a linear map T : V1→ V2 between two vector spaces V1 and V2 of dimensions n and m
respectively. Then we have:

Fn Fm

V1 V2

Fn Fm

A′

P

∼=

∼=

T

∼=

∼=

A

Q

where A and A′ are the matrix representations of T with respect to different bases of V1 and V2 and
P ∈ GLn(F) and Q ∈ GLm(F) are the change-of-basis matrices. P represents the column operations
on A and Q represents the row operations on A. Then we have:

AP = QA′, A = QA′P−1

Then we have the left group action of GLm(F)×GLn(F) on the set of m× n matrices Mm×n(F)
defined as:

(Q,P) ·A = QAP−1

The canonical form of A under this group action is:[
Ir 0
0 0

]
10.2.2 Linear Endomorphisms

Consider a linear endomorphism T : V →V on a vector space V of dimension n. Then we have:

Fn Fn

V V

Fn Fn

A′

P P

∼=

∼=

T

∼=

∼=

A

where A and A′ are the matrix representations of T with respect to different bases of V and
P ∈ GLn(F) is the change-of-basis matrix. Then we have:

AP = PA′, A = PA′P−1
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Then we have the left group action of GLn(F) on the set of n×n matrices Mn×n(F) defined as:

P ·A = PAP−1

The actual canonical form of A is complicated (Rational Canonical Form), but in generic case,
they are diagonal matrix.

10.2.3 2-Forms
Consider a 2-form ω : V ×V → F on a vector space V of dimension n. Then we have:

V ×V F

Fn×Fn

ω

∼=

Then [ω]v = [ω(vi,v j)] is the matrix representation of ω with respect to the basis v= {v1,v2, · · · ,vn}
of V . If we change the basis of V to u, then there is a unique invertible matrix, P ∈ GLn(F), such
that u j = ∑i viPi

j for all j. Then we have:

[ω]u = [ω(ui,u j)] = [ω(∑
k

vkPk
i ,∑

l
vlPl

j)]

= [∑
k,l

Pk
i ω(vk,vl)Pl

j ]

= [∑
k,l
(PT )i

kω(vk,vl)Pl
j ]

= PT [ω(vk,vl)]P

So we have the right group action of GLn(F) on the set of n×n matrices Mn×n(F) defined as:

A ·P = PT AP

We may check that (A ·P1) ·P2 = A · (P1P2) for all A ∈Mn×n(F) and P1,P2 ∈ GLn(F).
Note that the right action leaves the symmetric and skew-symmetric properties invariant,

i.e., if AT = A (or AT = −A), then we have (PT AP)T = PT AP (or (PT AP)T = −PT AP) for all
P ∈ GLn(F). For symmetric 2-forms, as (PT AP)T = PT AT (PT )T = PT AT P, where AT = A, so we
have (PT AP)T = PT AP. For skew-symmetric 2-forms, as (PT AP)T = PT AT (PT )T = PT (−A)P,
where AT =−A, so we have (PT AP)T =−PT AP.

When F = R, then the ω being symmetric or skew-symmetric corresponds to the matrix
representation being real symmetric or real skew-symmetric respectively. If ω is symmetric, then
the representation A is a Hermitian matrix, and we have A = ODOT for some orthogonal matrix O
and diagonal matrix D. Then the canonical form of symmetric 2-form is:Ir

−Is

0


where r+ s≤ n and r+ s+ t = n. If ω is skew-symmetric, then the iA is a Hermitian matrix, and
we have iA =UDU† for some unitary matrix U and real diagonal matrix D. Then the canonical
form of skew-symmetric 2-form is:

J2
. . .

J2
0


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where J2 =

[
0 −1
1 0

]
and the canonical form can be represented by J2⊕J2⊕·· ·⊕J2⊕0. Note that

J2
2 =−I2.

The canonical form of a pseudo inner product on a real linear space of dimension n is Ip,q =[
Ip 0
0 −Iq

]
where p + q = n. The basis inside the canonical representation is called pseudo-

orthonormal basis.
A pseudo Euclidean space is isomorphic to Rp,q := (Rn, (⃗x, y⃗) 7→ x⃗ ·Ip,q⃗y). In case the dimension

of V is n, then up to isomorphism, there are n+ 1 pseudo Euclidean structures on V , namely,
R0,n,R1,n−1, · · · ,Rn,0. Note that (vi,v j) = δi j for 1 ≤ i, j ≤ p, (vi,v j) = −δi j for p+1 ≤ i, j ≤ n
and (vi,v j) = 0 otherwise.

Up to isomorphism, there is only one real symplectic vector space of dimension 2n, i.e.,
D(Rn) := Rn⊕ (Rn)∗ with the canonical symplectic form. The representation of the symplectic
form is[

0 I
−I 0

]
with respect to the symplectic basis: (x1, · · · ,xn,x1, · · · ,xn), where {x1, · · · ,xn} is the standard basis
of Rn and {x1, · · · ,xn} is the dual basis of (Rn)∗. Also, ω(xi,x j) = ω(xi,x j) = 0 and ω(xi,x j) =

δ
j

i =−ω(x j,xi) for all i, j.
Note that we have AT =−A where A is the representation of a symplectic form. As det AT =

det A = (−1)ndet A, we know that n has to be even. Moreover, if we consider the a non-degenerate
skew-symmetric 2-form on a real vector space of dimension 2n, then its canonical form is:J2

. . .
J2


where J2 =

[
0 −1
1 0

]
. Note that this is similar to the canonical form of symplectic forms mentioned

above.
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When you studying higher maths, whether
algebra, geometry or anything, you realised
that the hard part is the language. It takes
time. People are impatient. If you are
impatient, you cannot learn mathematics.
But if you are patient enough, you learn the
language, you understand the basic facts.
No tricks, tricks are useless. And then
towards the end, you enjoy the fruit, that
means, everything become so easy. Just do
a simple calculation. You can get many
result. The center of mathematics is always
like that.

GUOWU MENG

11.1 Polar Decomposition and Singular Value Decomposition
11.1.1 Polar Decomposition

If z ̸= 0, then z = ρeiθ for a unique ρ > 0 and eiθ being a complex number of modulus 1. This is
called the polar decomposition of z. Then we have the following isomorphism:

GL1(C) = U(1) ·H>0
1 (C), [z] 7→ [eiθ ] · [ρ]

where H>0
1 (C) is the set of positive Hermitian 1×1 matrices, i.e., positive real numbers, and U(1)

is the set of complex numbers of modulus 1.
Then we may generalise this to matrices, i.e.,

GLn(C) = U(n) ·H>0
n (C), [A] 7→ [U ] · [P]

where H>0
n (C) is the set of positive Hermitian n×n matrices and U(n) is the unitary group of order

n. Then we claim that any invertible matrix A can be uniquely decomposed as A = PU for some
P ∈ H>0

n (C) and U ∈ U(n), and we call this the polar decomposition of A.
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Proof. Assume the existance, if A =UP then A† = PU†. Then we have:

A†A = PU†UP = P2

As A is invertible, so is A†A. Therefore, P =
√

A†A is a positive Hermitian matrix. Then we have
U = AP−1. Also, we have:

(A†A)† = A†A =⇒ P†P† = P2 =⇒ P† = P

and

z⃗†A†A⃗z = (A⃗z)†(A⃗z)> 0 =⇒ ∥P⃗z∥ ≥ 0

for all z⃗ and equal to 0 if and only if z⃗ = 0 as A ∈ GLn(C). Therefore, P and A†A are positive
Hermitian. Then we know that A†A =U ′DU ′† where U ′ ∈ U(n) and D is a diagonal matrix with
positive real numbers on the diagonal. Then we have P =U ′

√
DU ′†. Also, we have:

P2 =U ′
√

DU ′†U ′
√

DU ′† =U ′DU ′† = A†A

Then we have:

U†U = P−1A†AP−1 = P−1P2P−1 = In

Therefore, U ∈ U(n). ■

If it is real number, then we have the similar polar decomposition:

GLn(R) = O(n) ·S>0
n (R), [A] 7→ [O] · [S]

where S>0
n (R) is the set of positive symmetric n×n matrices and O(n) is the orthogonal group of

order n.

11.1.2 Singlular Value Decomposition
The corollary of polar decomposition is the singular value decomposition.

We consider the following commutative diagram:

Nul(A) Col(A)

Cn Cm

(Nul(A))⊥⊕Nul(A) Col(A)⊕ (Col(A))⊥

Cr⊕Cn−r Cr⊕Cm−r

Cn Cm

Span{⃗e1, · · · , e⃗r}⊕Span{⃗er+1, · · · , e⃗n} Span{⃗e1, · · · , e⃗r}⊕Span{⃗er+1, · · · , e⃗m}

A

∼=

A

∼=

∼= ∼=

A′
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where A′ =
[

A 0
0 0

]
with A ∈ GLr(C). Moreover, the direct sum in (Nul(A))⊥ ⊕Nul(A) and

Col(A)⊕ (Col(A))⊥ are orthogonal direct sums; the direct sum in Cr⊕Cn−r and Cr⊕Cm−r are ex-
ternal direct sums; the direct sum in Span{⃗e1, · · · , e⃗r}⊕Span{⃗er+1, · · · , e⃗n} and Span{⃗e1, · · · , e⃗r}⊕
Span{⃗er+1, · · · , e⃗m} are internal direct sums. Note that all the isomorphisms in the diagram are of
Hermitian spaces. Then we may simplify the diagram as follows:

Cn Cm

Cn Cm

A

U1 U2

A′

As A ∈ GLr(C), we have the polar decomposition A =U3P for some P ∈ H>0
r (C) and U3 ∈ U(r).

Moreover, we may further decompose P as P = U4DλU†
4 for some U4 ∈ U(r) and Dλ being a

diagonal matrix with positive real numbers on the diagonal. Then we have:

U2A =

[
A 0
0 0

]
U1

A =U†
2

[
U3U4DλU†

4 0
0 0

]
U1

=

(
U†

2

[
U3U4 0

0 Im−r

])[
Dλ 0
0 0

]([
U†

4 0
0 In−r

]
U1

)
Then we have the singular value decomposition of A:

A =UΣV †

where U =U†
2

[
U3U4 0

0 Im−r

]
, Σ =

[
Dλ 0
0 0

]
, V =U†

1

[
U4 0
0 In−r

]
.

Theorem 11.1 — Singular Value Decomposition. For any A ∈Mm×n(C), there exist unitary
matrices U ∈ U(m), V ∈ U(n) and a set of positive numbers {λ1, · · · ,λr} such that:

A =UΣV †, Σ =


λ1

λ2
. . .

λr

0


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11.2 Simultaneous Diagonalisation Theorem

Theorem 11.2 — Simultaneous Diagonalisation Theorem. Suppose that A1, · · · ,Ak are mutu-
ally commuting Hermitian matrices of order n, i.e., Ai ∈ Hn(C) and [Ai,A j] := AiA j−A jAi = 0
for all 1 ≤ i, j ≤ k, where [Ai,A j] is called the commutator of Ai and A j. Then there is a set
of distinct vectors λ⃗α ∈ Rk for α = 1,2, · · · , l and an orthogonal decomposition of Cn into
non-trivial subspaces:

Cn =
l⊕

α=1

E
λ⃗α

such that for all z⃗ ∈ E
λ⃗α

and Ai⃗z = λα(i)⃗z for all 1≤ i≤ k. In particular, there is a unitary matrix
U ∈ U(n) such that:

Ai =UDiU†, Di =

d1(i)
. . .

dn(i)

 ∈Mn×n(R)

for all 1≤ i≤ k and d j(i) are distinct.

Proof. We may induct on k or prove the case k = 2. For k = 2, as A1,A2 are Hermitian, we
have A1A2 = A2A1. Then we have A1 acts on Cn = Eλ1(A1)⊕Eλ2(A1)⊕ ·· · ⊕Eλk(A1) where
λ1,λ2, · · · ,λk are the distinct eigenvalues of A1. Then we also consider A2 acts on Cn. We have
the following claim: The action of A2 on Cn leaves each eigenspace of A1 invariant. For any
z⃗ ∈ Eλi(A1), we have:

A1(A2⃗z) = A2(A1⃗z) = A2(λi⃗z) = λi(A2⃗z)

Hence, A2⃗z ∈ Eλi(A1). Then, we have A2 = A1
2⊕A2

2⊕·· ·⊕Ak
2. We claim that each Ai

2 is Hermitian
on Eλi(A1). For any x⃗, y⃗ ∈ Eλi(A1), we have:

⟨⃗x,Ai
2⃗y⟩= ⟨⃗x,A2⃗y⟩= ⟨A2⃗x, y⃗⟩= ⟨Ai

2⃗x, y⃗⟩

So, Ai
2 is diagonalisable on Eλi(A1) with an orthonormal eigenbasis and distinct eigenvalues µ j.

Therefore, we have:

Eλi(A1) =
⊕

j

Eλi,µ j(A1,A2).

Then we have:

Cn =
⊕
i, j

Eλi,µ j(A1,A2).

We may also write λi,µ j as a vector in R2, i.e., λ⃗i, j = (λi,µ j). ■

We can use the simultaneous diagonalisation theorem to prove the spectral theorem for normal
operators.

Theorem 11.3 A complex square matrix can be diagonalised by a unitary matrix if and only if it
is normal.
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Proof. (⇒) Assume that A can be diagonalised by a unitary matrix, i.e., there is a unitary matrix U
such that A =UDU† where D is a diagonal matrix. Then we have:

A† =UD†U†

where D† is also a diagonal matrix. Then we have:

AA† =UDU†UD†U† =UDD†U† =UD†DU† = A†A

DD† = D†D as we have the following equality:d1
. . .

dn


d1

. . .
dn

=

|d1|2
. . .
|dn|2

 .
Therefore, A is normal.

(⇐) Assume that A is normal, i.e., AA† = A†A. Then we write A = B+ iC where B = A+A†

2 and
C = A−A†

2i . Then we claim that [B,C] = 0 if and only if A is normal. We have:

AA† = (B+ iC)(B− iC) = B2 +C2− i[B,C]

A†A = (B− iC)(B+ iC) = B2 +C2 + i[B,C]

Therefore, AA† = A†A if and only if [B,C] = 0. Also, we may check that B and C are Hermitian:

B† =

(
A+A†

2

)†

=
A† +A

2
= B, C† =

(
A−A†

2i

)†

=
A†−A
−2i

=C.

Then, by the simultaneous diagonalisation theorem, there is a unitary matrix U such that:

B =UDBU†, C =UDCU†

where DB and DC are diagonal matrices. Therefore, we have:

A = B+ iC =UDBU† + iUDCU† =U(DB + iDC)U† =UDAU†

where DA = DB + iDC is also a diagonal matrix. Hence, A can be diagonalised by a unitary
matrix. ■
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The following chapters are not in the exam syllabus, but for your reference.

11.3 Affine Spaces
A line or a plane can be regarded as an affine space. An affine space differs from a vector space in
that it does not have a distinguished origin. We may say that TOA is the tangent space of an affine
space A at a point O ∈ A. We also have symmetric spaces, which can be a sphere.

Let F be a field. An affine space of dimension n over F, A, is a principal (Fn,+)-set. A G-set,
the set on which G acts, is called principal G-set if the action is principal, i.e., transitive and free.

■ Example 11.1 Fn is an affine space of dimension n over F with the usual addition action of
(Fn,+) on itself.

(Fn,+)×Fn→ Fn

(⃗v, x⃗) 7→ v⃗+ x⃗

For any x⃗, y⃗ ∈ Fn, there is a unique v⃗ = y⃗− x⃗ ∈ Fn such that v⃗+ x⃗ = y⃗. Therefore, the action is
transitive and free. ■

In fact, any F-linear space is a F-affine space.
Problem 11.1 Any set with 2 elements is an affine space over Z2 in the unique way. However, for
3 elements, there does not have a unique affine space structure over Z3.

The model one of the A is An
F := {(x1, · · · ,xn) | xi ∈ F}. Then the group action is:

(Fn,+)×An
F→ An

F

(⃗v, x⃗) 7→ v⃗+ x⃗ := (v1 + x1, · · · ,vn + xn)

for all v⃗ = (v1, · · · ,vn) ∈ Fn and x⃗ = (x1, · · · ,xn) ∈ An
F. Moreover, up to isomorphism, there is only

one affine space of dimension n over F.
Similarly, we have the following conversion table:

Vector Space Affine Space

Linear Combinations Affine Combinations
Basis Affine Frame
Span Affine Span/Hull

Subspace Affine Subspace
Linear Map Affine Map

Linear Independence Affine Independence
Vectors Points

For the affine combinations, we have:

p0, p1, · · · , pk ∈ A, c0,c1, · · · ,ck ∈ F

with ∑i ci = 1, then the affine combination is defined as:

∑
i

ci pi := O+∑
i

ci(pi−O)

for some O ∈ A and ci(pi−O) is the linear combination in the vector space TOA. Note that we
may have different O, let say O′. We may check the independence of the choice of O: We know
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that O′ = O+(O′−O), then we have:

ci pi = O′+∑
i

ci(pi−O′)

= O+(O′−O)+∑
i

ci(pi−O′)

= O+∑
i

ci(O′−O)+∑
i

ci(pi−O′)

= O+∑
i

ci((O′−O)+(pi−O′))

= O+∑
i

ci(pi−O)

= ci pi

For affine subspaces and spans, we consider the following diagram:

p0
p1

p2

The red line is the smallest affine subspace containing p0 and p12, i.e., the affine span of p0 and
p1. We may write Span{p0, p1} := {c0 p0 +c1 p1 | c0 +c1 = 1,ci ∈R}= {t p0 +(1− t)p1 | t ∈R}.
Note that p0 p1 = {t p0 +(1− t)p1 | t ∈ [0,1]} is a subset of the affine span.

For the affine frame, we may consider the same picture above. Then {p0, p1, p2} is an affine
frame of the affine space (the plane) as no point is in the affine span of the other two points.

For the representation of the affine map, we have the following commutative diagram:

A1 A2

An
F Am

F

Fn Fm

x⃗ = x−0 A⃗x+ b⃗

φ

A

where A ∈Mm×n(F) and b⃗ ∈ Fm. Note that the representation of φ depends on the choice of origins
in A1 and A2.

A Euclidean space is a finite-dimensional real affine space with a Euclidean structure on its
tangent space. The Euclidean structure means the translation invariant assignment of inner product
to each tangent space of A. Let A be an n-dimensional real affine space. Take p ∈ A. Then the
pointed affine space (A, p) is isomorphic to the vector space TpA. Moreover, it is equivalent to Rn

with the standard inner product, and q ∈ (A, p) corresponds to the vector v⃗ = q− p ∈ Rn. Then we
have:

α1q1 +α2q2 = p+α1(q1− p)+α2(q2− p)
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Note that α1 +α2 need not be 1 here, as it is linear combination. Then the translation invariant
means that the length and angle remains unchanged in the inner product after translation, i.e.,
⟨p⃗q, p⃗r⟩= ⟨p⃗′q′, p⃗′r′⟩.

p

q

r

p′

q′

r′

v⃗

v⃗

Then q = q′+ v⃗ and r = r′+ v⃗. Note that TpA is different from Tp′A as they are tangent spaces at
different points, but they are isomorphic via translation by v⃗. We may consider the tangent line on
the circle at different points as an example.

Up to isomorphism, there is only one Euclidean space of dimension n, denoted by En :=
(An

R,⟨·, ·⟩) where ⟨·, ·⟩ is:

⟨p⃗q, p⃗r⟩= (q− p) · (r− p)

where the · is the standard dot product on Rn. This is equivalent to say that an orthogonal frame
exists, i.e., the rectangular coordinate system.

For an affine map φ : A1→ A2 between two affine spaces, we say that φ is injective implies
that dim A1 ≤ dim A2. The proof is by picking a point p1 ∈ A1 and take p2 = φ(p1). Then we
have the following commutative diagram:

(A1, p1) (A2, p2)

A1 A2

Tp1 φ

∼= ∼=

φ

We have two space-time affine space in Physics, namely Minkowski and Galilean.
The Minkowski space-time M is a 4-dimensional real affine space A4

R with a Lorentz structure.
Take a point p ∈ A4

R and u = (u0, u⃗),v = (v0, v⃗) ∈ R4. Then the Lorentzian inner product is
⟨u,v⟩p = u0v0− u⃗ · v⃗.

The Galilean space-time G is a 4-dimensional real affine space A4
R with a Galilean structure. It

is the Minkowski space-time taking the limit of light speed c→ ∞. We have the following diagram:

π−1(t1) π−1(t2) π−1(t3) π−1(t4) · · ·

A4
R

π

Time: E1

Event

t1 t2 t3 t4
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11.4 Quadratic Form and Clifford Algebra
Let V be a vector space over a field F. A quadratic form on V is a map q : V → F such that:

• q(αv) = α2q(v) for all α ∈ F and v ∈V ;
• The map B : V ×V → F defined by B(u,v) = q(u+ v)−q(u)−q(v) is bilinear.

In case char(F) ̸= 2, the set of all quadratic forms on V is equivalent to the set of all symmetric
2-forms on V . A quadratic form q can define a symmetric 2-form as B(u,v) = 1

2(q(u+ v)−q(u)−
q(v)); a symmetric 2-form B can define a quadratic form q(u) := B(u,u). We have the matrix
representation of symmetric 2-form with respects to a basis. So we can also have the matrix
representation of quadratic form, which is the symmetric matrices over F of order dimV = n.
Moreover, (V,q) forms a quadratic space.

Remark. When char(F) = 2, we may define a symmetric bilinear form B(u,v) = q(u+ v)−q(u)−q(v).
However, the quadratic form cannot be recovered from the symmetric bilinear form as B(u,u) = 0 for all
u ∈V , and so it is alternating. However, we can use a new bilinear form B′, may not be symmetric, or
even not unique, such that q(u) = B′(u,u) for all u ∈V .

A Clifford algebra Cl(V,q) := T •V/Iq is an associative algebra over F generated by v⊗v−q(v)1
for all v ∈ V . The ideal is equivalent to the ideal generated by u⊗ v+ v⊗ u− 2B(u,v)1 for all
u,v ∈V . Note that Cl(V,q) is Z/2 graded algebra.

We have the following isomorphisms:
• Cl(R0,1)∼=C as R-algebras, where elements in Cl(R0,1) are of the form a+be1 with e2

1 =−1;
• Cl(R1,0) ∼= R⊕R, the split-complex number, where elements in Cl(R1,0) are of the form

a+be1 with e2
1 = 1;

• Cl(R0,2) ∼= H, the quaternion, as R-algebras, where elements in Cl(R0,2) are of the form
a+be1 + ce2 +de1e2 with e2

1 = e2
2 =−1 and e1e2 =−e2e1;

• Cl(R1,1)∼=M2×2(R), the split-quaternion, as R-algebras, where elements in Cl(R1,1) are of
the form a+be1 + ce2 +de1e2 with e2

1 = 1, e2
2 =−1 and e1e2 =−e2e1;

• Cl(R2,0)∼=M2×2(R), the split-quaternion, as R-algebras.
The R, C and H are called the associative real division algebras.
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This is the end of the main content. Thank you for your support! I hope you have enjoyed my
notes!! By the way, I would like to remake this notes later after the final. If you are interested, find
me through Discord @stupidbenz, or Instagram @stupid.benz.0621.



A. Universal Properties

We first state the formal definition of universal properties.

Definition A.1 — Universal Properties. Let F : C →D be a functor between two categories
C and D. A universal morphism from an object X ∈ Ob(D) to the functor F is a unique pair
(A,u : X → F(A)) in D such that for any morphism f : X → F(A′) in D, there exists a unique
morphism f : A→ A′ in C such that the following diagram commutes:

X F(A) A

F(A′) A′

u

f F( f ) f

Such a property is called the universal property of the object A. Note that the dual version of
universal morphism from F to X can be defined similarly.

Remark. Such an object A is an initial object in a new category:
• Objects: all pairs (B, f : X → F(B)) for all B ∈ Ob(C);
• Morphisms: commutative diagrams in C:

X

F(B) F(B′)

f f ′

F(h)

The initial object in this category is exactly the object A with the universal property. This type of
construction is called the comma category and is denoted by (X ↓ F).

Similarly, the dual version of terminal object can be defined for the dual version of universal
morphism, and the category is denoted by (F ↓ X).
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A.1 Universal Properties of Limits
The following are the universal properties of some common limits in category theory.

• Products:

Xα ∏Xα

Z

πα

u
f

• Kernel:

X

Ker( f ) Y

Z

f
ι

0

0u

ι ′

• Subspaces:

V

U V/U

Z

π
ι

0

0
u

ι ′
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A.2 Universal Properties of Colimits
The following are the universal properties of some common colimits in category theory.

• Coproducts:

Xα

∏Xα

Z

ια

f
u

• Cokernel:

Y

X Coker( f )

Z

π

π ′

f

0

0 u

• Quotient Spaces:

V

U V/U

Z

π

π ′

f

0

0 u

• Free Vector Spaces:

X F[X ] X

Z |Z|

ι

f
F[u] u

• Tensor Products:

U×V U⊗V

Z

ι

φ u
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