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Prefaces

These lecture notes were written by a student in the course MATH 2131 — Honors in Linear and
Abstract Algebra by Professor Meng Guowu at HKUST in Autumn 2025-26.

All diagrams in these lecture notes are written in LaTeX TikZ code.

The notes reference the textbooks Linear Algebra by Friedberg, Insel and Spence, Abstract Algebra
by Artin and A First Course in Abstract Algebra by Fraleigh. Additionally, the notes reference
lecture notes from two other professors who taught this course previously: Professor Ivan Ip and
Professor Min Yan.
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List of Symbols

Symbols  Meaning
F a field
Uuv,w vector spaces
o,p elements in F
F" the set of all column matrices with n entries in F
(Fmy* the set of all row matrices with # entries in
FX] the polynomial ring
F[[X]] the formal power series ring
C,D categories
Set the category of sets
Vecy the category of vector spaces over a field F
Oy additive identity of vector space V
1y multiplicative identity of vector space V
C proper subset
C subset, i.e. can be equal
1 Inclusion map
— Injective arrow
T Projection map
—» Surjective arrow
S, T Linear maps
A,B Matrices
Morc(V,W) the set of all morphisms from V to W in category C
Hom(V,W) Hom-set of V to W
End(A) Endomorphism ring of A
Muxn(F)  the set of all m x n matrices over IF
X column vector with entries x;
x row vector with entries x;
€; column vector with only 1 at the i-th row and O at other places
5 row vector with only 1 at the i-th column and O at other places
a- a map that performs scalar multiplication
A a map that performs matrix multiplication
oy the Kronecker delta function
Ox the set of all Kronecker delta functions
0;j the Kronecker delta symbol
Ker(T) Kernel of linear map T
Im(T) Image of linear map 7'
Coker(T)  Cokernel of linear map T
Coim(T)  Coimage of linear map T
Span(S)  Span of a set of vectors S

® & =3

Product
Coproduct
Direct sum
Tensor product




Symbols Meaning

T Tensor algebra

Vv* Dual space of V
Vo Double dual space of V
D(V)  Double

ide Identity functor in category C
F[—]  Free vector space functor

| —| Forgetful functor
(—=)*  Dual space functor




1.1

“I assume you have learnt linear algebra.”

GUOWU MENG

Binary Operation

We start with the definition of a binary operation.
Definition 1.1 — Binary Operation. A binary operation on a set S is a mapping of the elements

of the Cartesian product S x S to S.
1 SxXS§S—>S
(x,y) > x-y
For ease of understanding, a binary operation is combining two objects into one. Hence, there

is something called unary and ternary operations, corresponding to the action of combining one
and three objects into one respectively.

= Example 1.1 A common example of a binary operation is addition on the set of natural numbers
N.

+:NxN—=N

(6,y) = x+y b

Definition 1.2 — Associative. A binary operation - : § X § — S is said to be associative if, for
all x,y,z € S,

x-(yz2)=(xy)z

= Example 1.2 A common example of an associative (binary) operation is addition on the set of
natural numbers N. For all x,y,z € N, we have x+ (y+2) = (x+y) +z. .
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Definition 1.3 — Identifiable. A binary operation - : § X S — S is said to be identifiable, or
unital, if there exists an element e € S, the identity or unit element, such that, for all x € §

e X—=X—=X-€

m Example 1.3 A common example of an identifiable (binary) operation is multiplication on the
set of natural numbers N. The identity element is 1, and for allx ¢ N, we havex- 1 =x=1-x. =

Proposition 1.1 The identity element of an identifiable operation is unique.

Proof. Let e and e, be two identity elements for the operation -. Then, for any element x € S, we
have:

el x=x=x-ej

€ X=X=X-€2

Now, consider the element e;: e; - ey = e;. But since e; is an identity element, we also have:
e1-ep = ep. Therefore, we conclude that e; = e, proving the uniqueness of the identity element. W

Note that the two-sided identity must be unique, but one-sided identities need not be. The
following is an example of it.

= Example 1.4 Consider a set X = { [(1) g]

multiplication. This set has many left identity elements, but no two-sided identity element. "

ac R} with the binary operation defined as matrix

Definition 1.4 — Invertible. A binary operation - : § x § — § is said to be invertible if, for every

element x € S, there exists an element y € §, called the two-sided inverse of x, denoted as x L

such that
X-y=e=y-Xx
where e is the identity element of the operation.

Remark. An invertible operation must be identifiable, since the identity element is required in the
definition of invertibility.

= Example 1.5 A common example of an invertible (binary) operation is addition on the set of

integers Z. For every integer x € Z, there exists an integer y = —x such that:
x+(—x)=0=(—x)+x (1.2)
where 0 is the identity element for addition. "

Proposition 1.2 The inverse element of an invertible operation is unique.
Proof. Let y; and y, be two inverses of an element x € S. Then, by definition of inverse, we have:
X yl = e = yl X

X-y2=e=yr-X

Now, consider the element y;: y; - x = e. But since y; is also an inverse of x, we can substitute e
with x-y2: y; - x = x -y, = e. By the associativity of the operation, we can rearrange this to:

yi=yire=yi-(x-y)=M-x)-ym=ey=x»m

Thus, the inverse element is unique. |
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The same applies to the inverse; one-sided inverses need not be unique. The example is left as
an exercise.
Definition 1.5 — Commutative. A binary operation - : § X § — § is said to be commutative if,
for all x,y € S, the following holds:

X-y=y-x

= Example 1.6 A common example of a commutative operation is addition on the set of integers
Z. For all x,y € Z, we have: x+y=y+x "

Definition 1.6 — Distributive (Harmonic). A binary operation - : S X .S — S is said to be
distributive with respect to another binary operation + : § x § — S if, for all x,y,z € §, the
following holds:

x-(y+z)=x-y+x-z
(y+z) x=y-x+z-x
The professor prefers to use the word “harmonic” instead of “distributive”. Note that it is

important to show that “which binary operation is distributive to which binary operation”. (The
two binary operations in this sentence are not commutative.)

= Example 1.7 A common example of a distributive operation is multiplication over addition on
the set of integers Z. For all x,y,z € Z, we have:

x-(y+z)=x-y+x-z

(y+z) x=y-x+z-x
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Groups, Rings, Fields
With those five properties, we can construct monoids and groups.

Definition 1.7 — Monoid. A monoid is a set M equipped with a binary operation f: M x M — M
having the following properties:

1. Associative

2. Identifiable
We say (M, f) is a monoid, and f is the monoid operation on the set M. A set M with a monoid
operation f is the monoid structure.

Definition 1.8 — Group. A group is a set G equipped with a monoid operation f : GX G — G
with the additional property that every element has an inverse.

= Example 1.8 (R\ {0}, x) is a group, but (R, x) is not a group since 0 does not have a multi-
plicative inverse. "

Definition 1.9 — Abelian Monoid / Group. A monoid / group (S, f) is said to be an abelian
if the operation f is commutative.

Definition 1.10 — Unital Ring. A unital ring is a set R equipped with two binary operations
f R xR — R (addition) and g : R X R — R (multiplication) such that the following properties
hold:

1. Additive Group: (R, f) is an abelian group.

2. Multiplicative Monoid: (R, g) is a monoid.

3. Distributive Property: g with respect to f.

Definition 1.11 — Commutative Ring. A commutative ring is a unital ring R such that the
multiplication operation g : R X R — R is commutative.

m Example 1.9 (Z,+, x) is a commutative ring. "

Definition 1.12 — Field. A field is a commutative ring [F such that every non-zero element has
a multiplicative inverse.

= Example 1.10 (Q,+, x), (R,+, x) and (C,+, x) are fields. "

= Example 1.11 — Finite Field. (Z/2Z,+, x) is a field, where Z/2Z = {[0],[1]}, [0] is the set of
even integers and [1] is the set of odd integers. Note that any Z/pZ is a finite field, where p is a
prime number. =

We may draw a diagram for the relationship between the algebraic structures.

Closed Operation Associativity

Set

Magma Semigroup

Identity

. C tati I . C tati . .
Abelian Group <" Group e Monoid —"E 5 Abelian Monoid

~ = /
(///+//

Unital Ring ——— Commutative Ring

Multiplicative

Rng Field

Inverse
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Morphisms

Normally, when we have two sets we can have a set map. What if the two are in the same algebraic
structures? They are called the homomorphisms.

Definition 1.13 — Monoid Homomorphism. A monoid homomorphism is a morphism between
two monoids that preserves the monoid structure. Formally, let (M;,-1) and (M,,-2) be two
monoids with identity elements e; and e;, respectively. A function f : M; — M, is a monoid
homomorphism if:

L flxay)=fx)2f(y) Vx,yeM,

2. f (€ 1) = e

Definition 1.14 — Group Homomorphism. A group homomorphism is a morphism between
two groups that preserves the group structure. Formally, let (G,-1) and (G2, -2) be two groups
with identity elements e; and ey, respectively. A function f: G; — G, is a group homomorphism

(x1y) =f(x) 2 () Vxy€eG
() =(fx)"" vxeG

Proposition 1.3 The second and third properties of a group homomorphism are consequences of
the first property.

Proof. Let f : Gi — G, be a group homomorphism satisfying the first property.
Second Property: For any element x € G, we have:

fx)=flx-1e1) = f(x) 2 f(er1)

So for any f(x) € G, this implies that f(e;) must be the identity element in G», i.e., f(e1) = ea.
Third Property: We have:

e2=fle) = flxx) = f(x) 2 f(x7")
This shows that f(x~!) is the inverse of f(x) in G, i.e., f(x~') = (f(x))~". [ |

For monoid homomorphisms, the second property cannot be derived from the first property.
Consider the identity element e; in M;. If we apply the first property, we get f(e; -1 e1) =
f(e1) 2 f(er). This simplifies to f(e;) = f(e1) -2 f(e1), which does not necessarily imply that
f(e1) is the identity element in My, i.e., f(e1) # ez, but f(e;) is the idempotent element in M,.
Therefore, the second property must be explicitly stated for monoid homomorphisms.

However in the case of group homomorphisms, the existence of inverses ensures that there is
only one element that can be idempotent under the group operation, which is the identity element.
Thus, for group homomorphisms, the second property can be derived from the first property.

I Definition 1.15 — Idempotent Elements. An element a is said to be idempotent if a = a®.
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To introduce the vector space, the following two morphisms are required.

Definition 1.16 — Ring Homomorphism. A ring homomorphism is a morphism between two
rings that preserves both the additive and multiplicative structures. Formally, let (R, +1,-1)
and (R,, 42, -2) be two rings with identity elements 0, 1; and 0y, 1,, respectively. A function
f +Ri — Ry is aring homomorphism if:

L fx+1y) =f(0)+2 /() VxyeR

2. fxay)=f(x)2f(y) Vx,y€R

3. f(l) =1,
Definition 1.17 — Endomorphism. An endomorphism is a morphism from an algebraic struc-
ture to itself. Formally, let (A, ) be an algebraic structure. An endomorphism f : A — A is a set
map such that:

fxy)=f(x)-fy) Vxy€A

The following two sets are the sets of all structure-preserving maps.

Definition 1.18 — Hom-set. The set of all morphisms from an algebraic structure A to another
algebraic structure B is called the hom-set, denoted by Hom(A, B).

Definition 1.19 — Endomorphism Ring. The set of all endomorphisms of an abelian group
(A,+), denoted by End(A), forms a (non-commutative) ring under pointwise addition and
composition of set maps. The addition and multiplication operations are defined as follows:

+:End(A) x End(A) — End(A)
(f,8) = (f+g:xm flx)+gx)) f+g:A—A

o:End(A) x End(A) — End(A)
(f,8) = (fog:xr f(gx))) fog:A—A

The identity element for addition is the zero endomorphism, which maps every element to the
identity element of the group.

0:A—A
x—0

The identity element for multiplication is the identity endomorphism, which maps every element
to itself.

1:A—A

X=X

Note that all endomorphisms in End(A) are group homomorphisms and End(A) = Hom(A,A).
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1.4 Linear Spaces

Then we can define what a linear structure is.

Definition 1.20 — Linear Structure. A linear structure over a field F on a set V is a pair (+,-)
where (V,+) is an abelian group with a ring homomorphism F — End(V'), where End (V') is the
endomorphism ring of the abelian group (V,+).

-:F— End(V)
o (o X aX) o V-V
The ring homomorphism is a (ring) action of the field F on the abelian group (V,+), called
scalar multiplication. The ring action can be written as a binary operation:
FxV =V
(a,X) — ax

A linear space / vector space is a set with a linear structure over a field on the set. In normal
textbook, a linear space will be defined as follows:

Corollary 1.1 — Linear Spaces. A linear space over a field IF is a set V equipped with two
operations: vector addition 4 : V x V — V and scalar multiplication - : F x V — V, satisfying
the following axioms for all i#,V,w € V and a, § € F:

Axiom Statement

1. Associativity of addition (@+V)+w=i+(HV+w)

2. Existence of additive identity J0 eV suchthat Vi € V,ii+0 = ii

3. Existence of additive inverses Vii € V,3—ii € V such that & + (—if) = 0
4. Commutativity of addition Ui+v=v+iu

5. Distributivity of scalar multiplication with ot (id + V) = i + v

respect to vector addition

6. Distributivity of scalar multiplication with (a2 +f)- = a-+f-

respect to field addition

7. Compatibility of scalar multiplication with (af})- = (a-)o(B-)

field multiplication

8. Identity element of scalar multiplication ~ F> 1+ (1-:x+ x) € End(V)

Remark. The first four axioms ensure that (V, +) is an abelian group, while the fifth axiom describes the
distributivity inside End(A) and the last three axioms describe the ring homomorphism.

m Example 1.12 F is a linear space over itself with the usual addition and multiplication operations.

:FxF—TF
(a,B) = af

The first I is the field acting on the second [F, which is the abelian group. "

m Example 1.13 Let X be a set and IF be a field. (f is a set map)

F[[X]] = Map(X,TF) 2% the set of all F-valued functions on X
—{f: X > T}
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F[[X]] is a linear space over F with the following operations defined pointwisely:

+ : F[[X]] x F[[X]] — F[[X]]
(f,e)—= (f+g:x— f(x)+gx)) f+g:X—F

-+ F x FI[X]] - F[[x]]
(a,f)— (af :x—of(x)) of : X —>F

m Example 1.14 Let X be a set and I be a field.

F[X] = Maps, (X, F) 2L the set of all finitely supported [F-valued functions on X
= {f:X — | f is finitely supported}
F[X] is a linear space over I as F[X] C F[[X]] and the operations are defined pointwisely as in the
previous example.

f X — F is finitely supported if the set {x € X | f(x) # 0} is finite or f(x) # O for only finitely
many x € X. n
= Example 1.15 Let 7 be a formal variable. Then F[[¢]] L F[[{1,2,¢2,---}]] = £y ant" is the set
of all formal power series in ¢ with coefficients in F and F|t] Lot Fl{1,t,£2,---}] = YN a,t" is the

set of all polynomials in 7 with coefficients in F. Both F|[¢]] and F[¢] are linear spaces over F. =

There are other names for F[X] and F[[X]]: Polynomial ring and Formal Power Series ring,
respectively.

m Example 1.16 Let n be a positive integer and I be a field. Then
1
Fr 2L : ceF

Cn

is the set of all column matrices with n entries in F. Elements in F” are written as ¥ and are called
column vectors. F" is a linear space over [F with the following operations defined entrywisely:

4+ F X F" — F”

a+b
(@b)—~d+b=| :
an + by
FxF"—F"
oa
(a,d)—ad=| :
oay

F" is a linear space over [F automatically as [F is a linear space over itself. "



“Linear algebra is the easiest in
Mathematics”

GUOWU MENG

2.1 Linear Maps

Linear map, sometimes linear transformation, is a homomorphism preserving linear structure.

Definition 2.1 — Linear Maps. Let V and W be two linear spaces over a field F. A linear map
isasetmap 7 : V — W such that for all u,v € V and a € I, the following holds:

T(u+v)=Tu)+T(v)

The set of all linear maps from V to W is denoted by Hom(V,W). Some may write L(V,W).

Definition 2.2 — Linear Combinations. Let V be a linear space over a field F. A linear
combination of vectors v, v, -+ ,v, € V is a vector of the form:

alvi+aivy+-+av,
where ', &%, -+, o* € F are scalars.

The reason for using the superscript for scalars is to avoid confusion with the subscript of
vectors. Also, it is due to the concept of dual space, which will be introduced later.

We can combine the two properties of linear maps into one property.

Corollary 2.1 — Linear Maps and Linear Combinations. A set map f: V — W between two
linear spaces over a field IF is a linear map if and only if 7" respects linear combinations, i.e., for
all v, v, € V and all scalars a', o> € T, the following holds:

T(o'vi +a?vy) = a'T(v)) + a*T (v2)
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m Example 2.1 Let A be an m X n matrix with entries in a field F. The map 7 : " — " defined by
Tx=T(x)=Ax

where right-hand side is the usual matrix multiplication, is a linear map over F. "

Proposition 2.1 A linear map 7 : F* — " is a matrix multiplication by a unique m X n matrix A
with entries in . The matrix A is called the standard matrix of the linear map 7.

Hom (F", Fm) —mawal__ . (F)

identification

T ¢ A
A- 1 A

where A- : X — AX and A can be expressed as follows:

A= |Té, Teée, --- Té,

The vector ¢; is the column vector which has only the value 1 at the i-th position and 0 elsewhere.

Proof. Consider a column matrix x € F” with entries x!,x%,--- ,x" € F. Then x can be expressed as

a linear combination of the vectors €;,¢é5, -+ ,&,:

n
x=x'& + X8+ - +21'¢, = Zx’é’,-

i=1

Since T is a linear map, it respects linear combinations. Therefore, we have:
n . n . n .
Tx=T leé’i = Zx’T(é}) = Zx’c_z’i = AX

where d; = Té; is the i-th column of the matrix A = |Té;, Té, --- Té,|. Thus, we have

TX = AX for all X € F". This shows that T can be represented as a matrix multiplication by the
matrix A. n

There is a simpler way to write Y7, x'&;: The Einstein Summation Convention. When an index
variable appears twice in a single term and is not otherwise defined, it implies summation of that
term over all the values of the index. Therefore, we can write:

x=x'¢;

where i is summed from 1 to n.
Definition 2.3 — Linear Functional / Homogeneous Linear Function. A linear map f: F* —
IF is called a homogeneous linear function or a linear functional if for all @ € IF and x € F”, the
following holds:

flox) = af(x)
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Corollary 2.2 — Standard Matrix of a Linear Map. The standard matrix of a linear map
T : F" — ™ can be written as:

_ A —
A:_fz_
— fn —

where f; : " — [ is the i-th component function of 7', which is a linear functional.

= Example 2.2 Let D : F[t] — [F[t] be the differentiation operator defined by:

N N
D (Z ant"> = Z nayt""!
n=0 n=1

for all polynomials Y¥_ a," € F[t]. The differentiation operator D is a linear map over IF. The
standard matrix of D with respect to the standard basis {1,7,72,--- N} of F[t] is given by:

0100 0

0020 0

0003 0
A= :

0000 N

0 00 0 0]

Proposition 2.2 Let X be a set and W be a linear space over a field F. Then the set of all set maps
from X to W, denoted by Map(X, W), is a linear space over F with the following operations defined
pointwisely:
+ : Map(X,W) x Map(X,W) — Map(X,W)
(f.8) = (f+g) x> f(x)+g(x)

i F x Map(X,W) — Map(X,W)
(o0, f) = (af) :x = o f(x)

Proof. The Map(X,W) is defined pointwisely by F, hence it is trivially a linear map. |

Proposition 2.3 Let V and W be two linear spaces over a field F. Then Hom(V,W) is a linear
space over I with the following operations defined pointwisely:
+ :Hom(V,W) x Hom(V,W) — Hom(V, W)
(f.8) > (f+g) v f(v)+g(v)

-:F x Hom(V,W) — Hom(V,W)
(a,f) = (af) :v= af(v)
Proof. Note that Hom(V,W) C Map(V,W). We need to show that the operations defined above

are closed in Hom(V,W), i.e., for all f,g € Hom(V,W) and o € F, f+ g € Hom(V,W) and
of € Hom(V,W) or equivalently, f respects linear combinations.



20 Chapter 2. Linear Maps and Matrices

Leti,v€V and o, B € F. Since f,g € Hom(V,W), we have:

(f+8)(aii+ B7) <= f(adi+ BV) + g i+ BV)
— of (@) + Bf (V) + ag(ii) + Bg(¥)
= a(f (@) +g(i) +B(f(V) +&(¥))

def

—a(f+g)@)+B(f+g))

where the second equality is due to the linearity of f and g. Thus, f+ g € Hom(V,W) and
of € Hom(V,W). [

Remark. Note that End(V) = Hom(V, V) is a linear space over F and also a ring with the addition and
multiplication operations defined in the previous section. The addition operation is commutative, but the
multiplication operation is not necessarily commutative.

Then we can say that

Map(F", F™) D Hom(F", F™) & M, (F)
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Injections, Surjections and Isomorphisms

Similar to normal maps, there are injective, surjective and bijective linear maps.

Definition 2.4 — Injective Linear Maps. A linear map f : V — W between two linear spaces
over a field I is said to be injective (or one-to-one) if for all u,v € V, the following holds:

f)=f(v) = u=v

Equivalently, f is injective if the only vector in V that maps to the zero vector in W is the zero
vector itself:

flu)=0 = u=0

Definition 2.5 — Surjective Linear Maps. A linear map f: V — W is said to be surjective (or
onto) if for every w € W, there exists at least one v € V such that:

w=f(v)

Definition 2.6 — Invertible Linear Maps / Linear Equivalences. A linearmap 7 :V — W is
said to be invertible if T has a unique two-sided inverse S, denoted by T, i.e., there exists a
linear map S : W — V such that:

TS=1y and ST =1y

where 1y : V — V and 1y : W — W are the identity maps on V and W, respectively. In this case,
we say that the linear spaces V and W are isomorphic or linear equivalent, denoted by V = W.

Corollary 2.3 — Invertible Linear Maps. A linear map 7 : V — W is invertible if and only if
T is both injective and surjective, i.e., bijective / one-to-one correspondence.

Proof. (=) Assume T : V — W is invertible. By definition, there exists a linear map S: W — V
such that 7S = 1w and ST = 1y.
To show that T is injective, suppose T (u) = T (v) for some u,v € V. We have:

S(T(u))=8(T(v)) = (ST)(u) =(ST)(v) = ly(u)=1ly(v) = u=v
Thus, T is injective. Then, to show that T is surjective, let w € W. Since TS = 1y, we have:
T(S(w)) =1lw(w)=w

Then for every w € W, there exists a v = S(w) € V such that 7'(v) = w. Thus, T is surjective.

(<) Now assume that T : V — W is both injective and surjective. We need to show that there
exists a linear map S : W — V such that TS = 1y and ST = 1y.

Since 7 is surjective, for each w € W, there exists at least one v € V such that 7'(v) = w. Define
the map S : W — V by choosing one such preimage for each w:

S(w) = achosen v such that T(v) =w

To show that S is well-defined, we need to ensure that if 7 (v;) = T'(v2), then v; = v,. This follows
from the injectivity of T'.

Now we verify that 7S = 1y: (TS)(w) =T(S(w)) = w for all w € W. Thus, TS = ly. Next,
we verify that ST = ly: (ST)(v) =S(T'(v)) = v forall v € V. Thus, ST = ly. Then we can check
that § is a linear map as follows:

T(S(aw; + Bwr)) = aw; + Pwr =aT (S(wy)) + BT (S(wr)) =T (aS(w1)+BS(w2))

Therefore, T has a two-sided inverse S, and hence T is invertible. [ |
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Definition 2.7 — Characteristic of a Field. The characteristic of a field I is the smallest
positive integer n such that:

14+14--+1=0
—_————

n times

If no such positive integer exists, the characteristic of IF is defined to be 0.

» Example 2.3 The differentiation operator D : [F[¢t] — F[¢] is not an injective linear map as
D(1) =0=D(2) but is a surjective linear map if F is a field of characteristic 0. ]
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2.3 Matrix Multiplications and Compositions of Linear Maps

We consider two linear maps 7 : F” — F™ and S : F” — F* with standard matrices A and B,
respectively. We want to find the standard matrix of the composition ST : F" — F.

Proposition 2.4 The standard matrix of the composition ST : F” — F* is the matrix multiplication
BA, i.e., for all x € ",

(ST)x = B(Ax) = (BA)x

Proof. Let x € F" be a column matrix with entries x!,x%,--- ,x" € F. Then x can be expressed as a

linear combination of the standard basis vectors €;,¢é,, -+ ,&,:
x=x'8 + X%+ + X6, = x'¢;

Consider the j-th column of BA, it is given by:
(8T)é; =S(T(¢;)) = S(a;) = Bd; = (BA)E,

for all j =1,2,---,n. This shows that the standard matrix of the composition ST is indeed the
matrix multiplication BA. |

Remark. Note that B is a k X m matrix and A is an m X n matrix, so the matrix multiplication BA is
defined and results in a k£ X n matrix.

The matrix multiplication BA can be computed as follows:

BA=B|d, d, --- d,| = |Bdy Bd, --- Bay,

where d; = T(¢;) is the i-th column of the matrix A. Also,
Bx=x'by +x’by+---+x"b, = x'b;

where l;,' = Bd; is the i-th column of the matrix B. Note that B is a k x m matrix, and x € ™. Thus,
the matrix multiplication Bx is defined and results in a column matrix in F¥.
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2.4 Elementary Row Operations

Definition 2.8 — Elementary Row Operations. Let A be an m X n matrix over a field IF. An
elementary row operation on A is one of the following operations:

1. Row Interchange: R; <+ R;.
2. Row Multiplication:  R; — aR;, where a € F\ {0}.
3. Row Addition: R; — R;+ aR;, where o € F and i # j.

Each elementary row operation can be represented by left multiplication of A by an appropriate
m x m matrix over IF. Note that all of them are invertible linear maps from F"*" to F"™*",

For ease of notation, we introduce the concept of matrix units, which is similar to the standard
basis vectors é;.

Definition 2.9 — Matrix Units. Let m and n be two positive integers and [F be a field. The matrix
unit E} is the m x n matrix over IF with 1 in the (i, j)-th position and 0 elsewhere, i.e.,

(Eij)é:{1 if (k. 1) = (i, j)

0 otherwise

forall 1 <k <mand1<1!<n. The (i, j)-th position is the entry in the i-th row and j-th
column. .

It can also be defined as E/ = &;¢/ € My, (F) where & € F" and &} = é/ € (F")* are the
i-th and j-th standard basis vectors, respectively. The é/ is the row matrix with 1 in the j-th
column and 0 anywhere else.

Remark. Note that for any m X n matrix A over a field F, we have:

Aé; = the j-th column of A € F"
¢'A = the i-th row of A € (F™)*

where (IF™)* is the set of all row matrices with m entries in F. ¢ is an element in (F™)* for any 1 <i < m.
Note the distinction between superscript and subscript.

ai- = éiAé’j = the (i, j)-th entry of A

We can write the ElJ as:

the j-th column

!

| o 0 - 000 -0
E/=¢&é¢ =|1{[0 - 01 0 -~ 0]=]0 - 0 1 O --- O|<— thei-throw

0 0 000 0

0] 0 - 000 - 0

Then we consider the row operations by using the matrix units.

Proposition 2.5 The row operation R; <+ R; is a linear map where the standard matrix is ARioR; =
I—E[—E]+E/ +E\
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Proof. The linear map 7 : " — " is defined pointwisely. We can say the map is:

¢ ifk=i
G {e ifk=j
& ifk#ij

Then the standard matrix of 7 is:

Agor, = &1 - & - & - &y :I—E}—E}+E{+E}

where [ is the n X n identity matrix. |

Proposition 2.6 The row operation R; — oR; where oo € F* :=TF \ {0} is a linear map where the
standard matrix is Ag,—sqr, = I+ (0t — 1)EL.

Proof. The linear map T : " — " is defined pointwisely. We can say the map is:
- aé; ifk=i
€k 9 . .
e, ifk#i
Then the standard matrix of T is:

AR —aRr, = é - aé - @&, :I+((X—1)E;

where [ is the n X n identity matrix. |

Proposition 2.7 The row operation R; — R; + aR; where o € IF and i # j is a linear map where
the standard matrix is ARi—>Ri+aRj =1+ (in’.

Proof. The linear map T : F" — " is defined pointwisely. We can say the map is:
. éit+oe; ifk=i
S A . .
ér ifk#£i
Then the standard matrix of 7 is:

s S S _ j
AR,»—>R,-+O¢RI-— €y -+ étae; -+ e —I—i—OCEl-

where [ is the n X n identity matrix. |

All invertible matrices can be written as a product of a finite sequence of elementary row
operation matrices.
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Dimensions of Vector Spaces

Definition 2.10 — Finite-Dimensional Vector Spaces. A linear space V over a field F is said
to be finite-dimensional if there exists a linear equivalence 7 : V — " for some positive integer
n. In this case, we say that the dimension of V is n, denoted dim gV = n or simply dim V =n.

Definition 2.11 — Infinite-Dimensional Vector Spaces. A linear space V over a field F is
said to be infinite-dimensional if V is not finite-dimensional.

We have to prove that the dimension of a finite-dimensional vector space is well-defined.

Proposition 2.8 If there exists two linear equivalences 7 : V — F" and S : V — F”, then n = m.

Proof. Since S is linear equivalence, it has a unique two-sided inverses S~1:TF" — V. Consider the
composition of this map:

TS ':F" — F"

Since TS~ is a composition of linear equivalences, it is also a linear equivalence. Mutatis mutandis,
for the opposite direction.

Now, we know that a linear equivalence between two finite-dimensional vector spaces. Then
we have dim " = dim ™ or n = m. Thus, the dimension of a finite-dimensional vector space is
well-defined. |

Graphically, we have the following commutative diagram:

Ve T o pm
S

TS
]Fn

Remark. In drawing commutative diagram, we can use — to denote an injective linear map, — to denote
a surjective linear map, and = or combining the two to denote an invertible linear map.
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2.6 Elementary Column Operations, Canonical Form and Rank

Definition 2.12 — Elementary Column Operations. Let A be an m X n matrix over a field .
An elementary column operation on A is one of the following operations:

1. Column Interchange: G ~C;.
2. Column Multiplication: ~ C; — aC;, where o € F\ {0}.
3. Column Addition: C; — Ci+aCj, where oo € F and i # j.

Each elementary column operation can be represented by right multiplication of A by an
appropriate n X n matrix over [F. Note that all of them are invertible linear maps from F”*" to

men

: . . I
Proposition 2.9 Any m x n matrix A can be transformed into a matrix of the form [ (; 8] by a

finite sequence of elementary row and column operations on A, where r is the rank of A.

The following is the commutative diagram of the proposition above, where B = [16 8] :

e
Y P
Fre B8 o pm

Note that P is the product of a finite sequence of elementary row operation matrices and Q
is the product of a finite sequence of elementary column operation matrices. Both P and Q are
elementary and invertible matrices. Thus, we have:

L 0]
[0 0]_PAQ

Definition 2.13 — Canonical Form of a Matrix. The matrix [g 8} obtained from an m X n

matrix A by a finite sequence of elementary row and column operations on A is called the
canonical form of A.

Remark. The canonical form of a matrix defined is also called the Smith Normal Form or Normal Form
of a matrix.

Definition 2.14 — Rank of a Matrix. The rank of an m x n matrix A over a field F, denoted

by Rank(A), is the number of leading 1’s in the matrix [8 8] obtained from A by a finite

sequence of elementary row and column operations on A.

Remark. The value r is uniquely determined by A.

Proposition 2.10 Let A be an m x n matrix over a field F. Then the following statements are
equivalent:

I

0

——
n

A is invertible <— m{ [ 0O 0

8] is invertible <= Rank(A)=m=n < [I, 0

:| :Im:In
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Proof. If A is invertible, then the matrix PAQ~! is also invertible, as P and Q are elementary and
invertible matrices, and hence the product is invertible.

If PAQ~! is invertible, and note that m = n is automatically true. As only square matrix
is invertible. Without the loss of generality, let say PAQ~' is a m x m matrix, then we have
Rank(PAQ~!) = m. Also note that the rank is invarient under multiplication by invertible matrices,
so Rank(A) = Rank(PAQ~!). Hence, Rank(A) = m = n.

If Rank(A) = m = n, as the canonical matrix remains the m x n structure, we know that the
canonical form is actually a square matrix, let say m x m. Also r = Rank(A) = m. Hence the whole
canonical form become an identity matrix I,.

If the canonical form is an identity matrix /, i.e., it is invertible. Then the matrix P O=Ais
also invertible for some elementary and invertible matrices P and Q. |

Proposition 2.11 Let A be an m X n matrix over a field F. Then the following statements are
equivalent:

A has a left inverse <= A is injective <= Rank(A) =n <— [16 8] = [I”]

Proof. If A has a left inverse, let say B, then we have BA = I,,. Then for B(A(x;)) = B(A(x2)), we
have (BA)x; = (BA)x,, which implies x; = x,. Hence it is injective.

If A is injective, we can consider A = P~'CQ, where C is the canonical form of the matrix A.
Then we consider P~!CQ% = 0. Since P! is invertible, it won’t produce non-trivial solutions. We
can consider C(Q%) = 0 = Cy. Then we have

I, O |¥1| 1|0

0 0] || |0
where y] and y5 are column vectors with size r and n — r respectively. Then I.y] = 0, which implies
v1 =0, while y> can be anything. As A is invertible, then AX = 0 only has one trivial solution X = 0.
Also, Q is invertible, hence y has only one trivial solution 0, i.e., ¥, = 0. Hence we have n —r =0

due to the size of y, being 0. Hence the rank of A is n.
If Rank(A) = n, then the canonical form of A is

Irxr 0r><(n7r) :| - [ Inxn O"X("*") :| = |: Lxn :| = |:In:|
O(m—r)xr O(m—r)><(n—r) O(m—")X" O(M—")X(”—”) O(mfn)xn 0

If the canonical form of A is [{ﬂ , then we consider PAQ~! = C. Also, A = P~!CQ. We

construct a candidate for left inverse D = [I, 0]. Then we have DC = [I, 0] [16’] = I,. Then the
left inverse of A is L = QDP~!. Then we check, LA = QDP~'A = QDP~'PCQ~' =I,. Hence, A
indeed has a left inverse. u

Proposition 2.12 Let A be an m x n matrix over a field F. Then the following statements are
equivalent:

A has aright inverse <= A is surjective <= Rank(A) =m < [I(; 8} = [In 0]

Proposition 2.13 For every b, [16 8

Linear Algebra is the study of linear map between two finite-dimensional vector spaces.

} ¥=bhasa unique solution.
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-8 [~]g

o P
I. 0| .. .
where C = 0 O,dlmV:nanddlmW:m.

The coordinate maps [—| and [—]; are linear equivalences and they are the trivialisation of V
and W, respectively. The matrix A is the standard matrix of the linear map 7 : V — W under the
bases B and B’. The matrix C is the canonical form of A. The matrices P and Q are products of

finite sequences of elementary row and column operation matrices, respectively. Both P and Q are
elementary and invertible matrices.
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Properties of Linear Maps

Let f: V — W be a linear map between two finite-dimensional vector spaces over F. We have the
following properties:

1. fisinjective if and only if Ker(f) = {Oy }, i.e., the kernel is trivial.

2. fis surjective if and only if Coker(f) = {Ow }, i.e., the cokernel is trivial.

3. fis an isomorphism if and only if Ker(f) = {0y} and Coker(f) = {Ow }.

4. f is surjective if and only if for any linear map g : W — Z, go f = 0 implies g = 0.
5. f isinjective if and only if for any linearmap 2: U — V, foh =0 implies h = 0.

Let f : V — W be a set map between linear spaces. Then the graph of f, ' :={(v, f(v)) |[veV}
is a linear subspace of V @ W if and only if f is a linear map. Also, the domain of f is isomorphic
to Ff.

f is injective if and only if f is an imbedding, i.e., the map f : V — Im(f) that sends v to f(v)
is an isomorphism.
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“Completion is one of the major great ideas
in mathematics.”

GUOWU MENG

Linear Subspaces, Kernels and Images

Here, we discuss linear spaces with more in depth terms.

Definition 3.1 — Linear Subspaces. Let W be a linear space over F and V is a subset of W,
denoted as V C W. V is a linear subspace of W if V, with 4+ and - inherited from those of W, is
a linear space.

Proposition 3.1 Let V C W. V is a subspace of W if and only if V is not empty and V is closed
under + and -.

Proof. If V is a subspace of W, then V is non-empty as a linear space must contain a zero vector by
definition, as V is also a linear space. Also, the other two are due to the axioms of linear space.
If V is not empty and closed under + and -, we just have to check the each axiom. |

Definition 3.2 — Kernels. Let f: V — W be a linear map. The kernel of f, denoted as Ker(f),
is defined as

Ker(f) 2L {ve V| f(v)=0w} = '({ow})

m Example 3.1 Let f: V — W be a linear map. Ker(f) is a subspace of domain of f,i.e., V.
First, we have Oy € Ker(f), as f(0y) = Oy, so Ker(f) is not empty.
Then we consider o', & € F and vy, v, € Ker(f), we have

fla'vi+a?vy) = al f(v) + & f(v2) = a' (Ow) + o (Oy) = Oy

The first equality due to the linearity of f and the second is due to v; € Ker(f). "
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Definition 3.3 — Images. Let f: V — W be a linear map. The image of f, denoted by Im(f),
is defined as

Im(f) <= {f() [veV}CW
m Example 3.2 Let f: V — W be a linear map. Im(f) is a subspace of codomain of f, i.e., W.
First, we have f(Oy) = Ow € Im(f), so Im(f) is not empty.
Then we consider o', ? € F and f(v1), f(v2) € Im(f). We have

alf(v1)+a2f(vz) :f(Oclvl +062vz) € Im(f)

The equality is due to the linearity of f. n

= Example 3.3 Let W be a linear space over a field F and {V } 4c; be the family of subspaces of
W indexed by the element in the index set /. Then [),; Vi is also a subspace of W.

First, we have Oy € Vi for all @ € 1, s0 Ow € (ges V- Thus, (yer Ve is not empty.

Then we consider a',a? € F and v, v, € Nacr Va- We have v, vy € Vg for all a € 1. Thus,
olvy + a?v, € V, for all o € I. This shows that alv; + a?v, € Noer Va- n

Then we consider the duality of the intersection and union of subspaces. Whether the union of
two subspaces is still a subspace? Unfortunately, the answer is no in general case. However, we
have the following proposition.

Proposition 3.2 Let W be a linear space over a field [ and consider the family of subspaces
{Va}aer- Then JyesVa is a subspace of W where | J,c; Ve is the completion of (Jye; Vi under
linear combinations. We call J¢; Vi the sum of the subspaces {Vy }aer, denoted by ¥ o/ V.
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3.2 Linear Span and Linear Independence

Definition 3.4 — Linear Span. Let V be a linear space over a field F and S C V. The linear
span of S, denoted by Spang(S) or simply Span(S) or S or (S), is defined as the completion of
S inside V under linear combinations.

Corollary 3.1 The linear span of S can also be defined as the intersection of all subspaces of V
containing S, which is the smallest linear subspace of V containing S. It can be written as:

Span(S) = ﬂ Vo CV  where I ={Vy, CV |V, is asubspace of V and S C V }

ael

Remark. Note that I is not empty as V € I. Thus, Span(S) is well-defined. V is the largest subspace of
itself and {0y } is the smallest subspace of V.

Proposition 3.3 Let W be a linear space over a field F and S C W. Then

Span(S) = {Z o's;|[neN,a' €F,s; GS}
i=1

Note that the summation is a finite summation.

Definition 3.5 — Linear Independences. Let W be a linear space over a field F and Vi, --- ,V}
be subspaces of W. The subspaces Vi, -, Vj are said to be linearly independent if V; # {Ow }
for all i and there is one and only one way to split Oy € W as a sum of vectors from each V;, i.e.,
if v; € V; for all i and Zi-‘:l v; = Ow, then v; = Oy for all i.

Vectors vy, vy, .-, v € W are said to be independent if the subspaces Span(vy), Span(vz), - -,
Span(vy) are linearly independent.

Proposition 3.4 vi,vy,---, v € W are linearly independent if and only if there is one and only one
way to write Oy € W as the combination of vy, - - - , v with coefficients in F, i.e., the equation

alvi+- 4 afv =0

has only the trivial solution, i.e., & = 0 for all i.
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Linearly Independent Sets and Spanning Sets

If we consider a set, what does it mean by being linearly independent? Is there any properties for
spanning if the set spans the whole codomain?

S CV is said to be a linearly independent set of vectors in V if no elements in S can be expressed

Definition 3.6 — Linearly Independent Sets. Let V be a linear space over a field IF. A subset
as a linear combination of the finitely many other elements in S.

Definition 3.7 — Spanning Sefs. Let V be a linear space over a field F. A subset S C V is said
to be a spanning set of V if Span(S) = V.

= Example 3.4 Let V =3 and consider the three vectors &, & and &3.

Then the set S = {¢€,&2,¢] + &>} is not a spanning set of V as Span(S) = Span{é;,é>} # V. If
we consider the Span{é;,é,} = W, then {€,&,} is a minimal spanning set of W.

The set S = {€1,€] +&,,€) + €, + &3} is a spanning set of V. "

Remark. If we consider the matrix of {€],€,,¢| + &, } with respect to the standard basis of F3, we have:

1 1
A= 10 1
0 0

Then we have Rank(A) = 2 < 3. Thus, the set is not a spanning set of .

S = O

= Example 3.5 Consider the subset S = {1,#,¢2,---} C F[[t]]. Then Span(S) = F[t] which is a
proper subspace of F[[¢]]. As the linear combination of finitely many elements in S is a polynomial,
but an element in F|[[¢]] can be a power series. .

Definition 3.8 — Minimal Spanning Sets. Let V be a linear space over a field [F. A spanning
set S C V is said to be a minimal spanning set of V if no proper subset of S is a spanning set of
V,ie.,S CS = Span(§') C Span(S) =V where Span(§’) # V.

The following is also the equivalence definition of linearly independent sets, spanning sets and
minimal spanning sets.

Given a linear space V over a field F. We define the order set S := {V},V,,---,V,} CV. The
order set S forms a linear map ¢s : " — V defined by:

n
Os(X) = ¢s ) = x4+ X, = le‘_;i
: i=1
x"
Proposition 3.5 The order set S := {V},V,,--,¥,} CV is said to be linearly independent if and
only if the linear map ¢s : " — V defined above is injective.

Proposition 3.6 The order set S := {V},V,,---,V,} C V is said to be a spanning set of V if and only
if the linear map ¢s : F"* — V defined above is surjective.

Proposition 3.7 The order set S := {V},V,,---,V,} C V is said to be a minimal spanning set of V
if and only if the linear map ¢s : F* — V defined above is bijective.
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Remark. A order minimal spanning set is regarded as basis.

= Example 3.6 Let X be a set, F[[X]] be the set of all functions f : X — [F and F[X] be the set
of all finite support functions f : X — IF. For each x € X, we define the Kronecker delta function
O : X — F at point x by

1 ify=x
o(y) =
) {O ify#x

Clearly, 6, has finite support, thus J, € F[X].

Then we have a set 6y = {6, | x € X} C F[X]. We have Span(8x) = [F[X] as any finite support
function f : X — F can be written as a linear combination of finitely many delta functions. Thus,
Ox is a spanning set of F[X].

Moreover, Oy is a linearly independent set. Assume that there exists a finite linear combination
of other delta functions such that 6, = Y &”3,. Then we have 6,(x) =1 =Y a’8,(x) = 0. This is a
contradiction. Thus, Jx is a linearly independent set. "
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Group Actions

Next, we discuss quotient space. However, before introducing quotient space, we have to understand
what group actions are.

Definition 3.9 — Group Actions. Let G be a group and X be a set. A left group action of G
onXisamap-:GxX — X, (g,x) — g-x, such that for all g;, g, € G and x € X, the following
properties hold:

1. Compatibility: (g1g2) -x = g1 - (g2-x).

2. Identity: e-x = x where e is the identity element of G.

Same for the right group action of G on X, just think it dually.
Consider a rotation on a plane. It is a group action of the group SO(2) on the set R?.

_ [cos@ —sin6
§= \sin® cos@

Then we have the following group action:

<

NN
o/

<l

Orbits

ZS\N

Definition 3.10 — Orbits. Let G be a group acting on a set X. The orbit of the action through a
point x € X, denoted as G - x, is defined as the set of points in X that can be reached from x by
the action of elements of G, i.e.,

Gx={gx|g€eG}

There is only two situation for the orbits, either the origin or a circle.
In the following section, we may regard the orbits G- x as a coset.

Definition 3.11 — Partition. A partition of a set X is a collection of non-empty, disjoint subsets
of X whose union is X. The partition of the set X is the same as an equivalence relation on X.

Orbits give a partition of the set X, i.e., X can be expressed as the disjoint union of its orbits.
The orbits of the action are the equivalence classes of the equivalence relation.

Let f: X — Y be a map between two sets X and Y. Then f defines a partition of X by the
equivalence relation. The equivalence classes are the preimages of points in Y, i.e., f~!(y) for each
yeY.
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Quotient Spaces

Let V be a subspace of a linear space W over a field F. We know (V, +) is an abelian group. Then
we have the group action of V on W defined by: (v,w) — v-wforallv € V,w € W. v-w is defined
as v+ w where + is the addition operation in W. We know that (vi +v2) +w =v; + (v2+w) and
Oy +w=wforall vi,v, € V and w € W. Thus, it is a group action.

The following commutative diagram illustrates the group action, where the associative and
identity properties are inherited from the addition operation in W, i.e., we need not prove the group
action as above.

W xW

TN

VxW w

This group action defines the following equivalence relation on W, where V is the acting group:

w1 ~wy — v €V such that wp) = v+w;y
= wry—w eV

Definition 3.12 — Quotient Spaces. Let W be a linear space over a field IF and V be a subspace
of W. The quotient space of W by V, denoted by W /V, is defined as the set of orbits of the
group action of V on W, or the set of V-equivalence classes in W with the equivalence relation
defined above, i.e.,

W/ V={V-wlweW}={w+V|weW}
where V-w=w+V ={w+v|v e V}iscalled the coser of V in W containing w.

Definition 3.13 — Quotient Map. The natural surjective map @ : W — W /V defined by
w(w) =w+V forall w € W is called the quotient map or projection map. Note that w+V can
be written as w or [w].

In general, if a group G acts on a set X, then the quotient set X / G is defined as the set of orbits
of the action, i.e.,

X/G={G-x|xeX}

Similarly, there is a natural surjective map 7 : X — G defined by 7(x) = G-x for all x € X.
The following is a graphical illustration of the quotient space.
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We can see that each line parallel to V represents a coset of V in W. The quotient space W /V
is the set of all such lines. We may consider each line as an orbit of the group action of V on W.
Note that there is not only one unique way to represent the coset w+ V. Just like the illustration
above, w; and w’l are two different representatives of the same coset w; +V = w’l + V. Note that
their difference is an elementin V, i.e., w; — w’l ev.

Note that we now do not know whether W/ V is a linear space or not. We will show that it is
indeed a linear space by using the following proposition.

Proposition 3.8 There is a unique linear structure on W /V such that the quotient map 7 : W —
W /V is a linear map.

Proof. Assume that such a linear structure exists. Then for all wy,w, € W and ¢, oy € IF, we have
7T(061W1 + a2W2) = [a1w1 + Otsz] = 0 [W]] + Otz[Wz] = Otﬁ'C(W]) + OC27L'(W2)

This suggests that a;[w1] 4+ 0p[w>] should be defined as [ow; + apwy] if 7 is linear. As there is
only one formula, this proves the uniqueness of the linear structure on W/ V.

Then we consider whether the linear combination on W/V is well-defined. Assume that
[wi] = [w)] and [wy] = [w}], i.e., wi —w| € V and wy —w/), € V. Then we have

(oqwy + apwa) — (W) + opwh) = a; (wy —w)) + o (wa —wh) €V

which means [o;w; + cpwa] = [y W] + opw)]. This means that the linear combination is indepen-
dent of the choice of representatives. Thus, the linear combination is well-defined. |

In the normal procedure, we first define the operations and then check whether the set is closed
under the operations and zero exists. Then we check whether the map preserves the structure and
show the uniqueness of the structure. However, in this case, we first assume that such a structure
exists and then derive the operations from this assumption. Subsequently, we check whether the
operations are well-defined.

In the first part, we show that there is only one possible way to define the operations if the
quotient map is linear. Moreover, the definition ensures the preservation of the linear structure. In
the second part, we show that the operations on the set W /V are well-defined.

If we consider the graphical representation of the quotient space W /V and the quotient map 7,
we may use the following diagram:

V+a Vv b+V (3.5,0)+V
a
w
0 b
T
w/v . R . .
[a] [0] 6] [(3.5,0)]
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Universal Properties

Proposition 3.9 Let V be a linear space over a field F and S be a minimal spanning set of V.
Then for any set map ¢ : S — Z, where Z is any linear space over I, there is a unique linear map
¢ :V — Z such that ¢|s = ¢.

In other words, the following diagram commutes:

ses — 7

seV

Proof. Assume the existence of such a linear map 5 . Then for all s € S, we have 6 ot(s)=¢(s) =
o).

Since S is a minimal spanning set of V, for any v € V, we have a unique way to write v as a
linear combination of finitely many elements in S, i.e., v=Y ; o;s; where o; € F and s; € S are
distinct. Then we have

- ~ n n - n
o(v) =9 (Z aisi> =Y o'o(s) =) a'9(s)
i=1 i=1 i=1
This shows the uniqueness of (}7 .

Then we claim that the map 5 defined above is well-defined. Since S is a minimal spanning set
of V, there is only one way to write each element in V as a linear combination of elements in S.
Thus, the definition of 5 does not depend on the choice of representation of v. This shows that (5 is
well-defined. |

Note that we first define the map on the spanning set and then extend it to the whole space.
The uniqueness is due to the fact that there is only one way to write each element in V as a linear
combination of elements in S and the existence is due to the fact that we can always define the map
on V by using the linear combination.

This proposition shows thats a linear space with a minimal spanning set has the following
universal property: any set map from the minimal spanning set to another linear space can be
uniquely extended to a linear map from the whole space to that linear space.

o ——— ¢
Map(S,Z) = Hom(V,Z)
pot —— ¢

Proposition 3.10 Let W be a linear space over a field F and V be a subspace of W. Then we have
the following commutative diagram:

Vv
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where Z is any linear space over FF and ¢ : W — Z is any linear map such that ¢ (v) = 0 for all
v € V. Then there is a unique linear map ¢ : W/V — Z such that ¢ o 7 = ¢.

Proof. Assume the existence of such a linear map ¢. Then for all w € W, we have ¢ (w]) = ¢ (w).
However, this may not be well-defined. Then, we check whether it is well-defined. Assume that
[w] = [w/], then we have ¢ ([w']) = ¢(w'). Note that w—w’ € V. Thus, we have ¢(w' —w) = 0.
This means that ¢ (w') — ¢ (w) = 0z, i.e., $(w') = ¢(w). This shows that ¢([w']) = ¢([w]). Thus,
¢ is well-defined.

Then we consider the linearity of ¢. For all [w],[w,] € W/V and &', a2 € F, we have

¢ (a' fwi]+ o’ [wa]) = @ ([a' w1 + &P wa])
= ¢ (o'wi + a’wy)
=a'¢(wi)+a’(w2)
= o' ¢([w1]) + 29 ([w2])

This shows that (}7 is linear. |

Remark. Note that [0] =V. If ve V, then | =v+V={v+V |V eV}={/|V'eV}=V=][0]
Thus, 7(v) = [v] = [0] for all v € V. So the map from V — W /V is the zero map. Thus, the triangle

commutes. Also, the map from v to Z is defined as the zero map, making the construction of ¢ is possible,
as the key step is that (W' —w) =0z forallw' —w e V.

Generally, we may consider the following commutative diagrams, where left is the general case
and right is the dual case:

Im(f) Coim(f)
1 1
0 0 0 0
w w
Vo n Vo 7
Z 4mmmmmmmm e B Coker(f) Z --—------—-—--- S » Ker(f)

Definition 3.14 — Cokernel. Let f: V — W be a linear map between two linear spaces over a
field F. The cokernel of f, denoted by Coker(f), is defined as the quotient space of W by the
image of f, i.e.,

Coker(f) =W/Im(f) =W /Im(f)
where Im(f) = {f(v) | v € V} is the image of f.

Definition 3.15 — Coimage. Let f: W — V be a linear map between two linear spaces over a
field F. The coimage of f, denoted by Coim(f), is defined as the quotient space of the domain
W by the kernel of f, i.e.,

Coim(f) = W /Ker(f) = W /Ker(f)
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| where Ker(f) = {w € W | f(w) = Oy} is the kernel of .
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Sum and Direct Sum

Definition 3.16 — Sum of Subspaces. Let V| and V, be two subspaces of a linear space W
over a field F. The sum of V| and V;, denoted by V| + V5, is defined as the set of all possible
sums of elements from V; and V5, i.e.,

Vi+V, = {v1+V2 ‘ vi €V, v EVQ}

Proposition 3.11 The sum V| 4V, of two subspaces V| and V, of a linear space W over a field [ is
also a subspace of W.

Proposition 3.12 V| +V, = Span(V, UV,).
Recall the definition of linear independence (Definition 3.5): V| and V; are said to be linearly

independent if V| and V, are non-trivial and x| +x, = 0 for x; € V; implies that x; = x, = 0.
We have the following definition for weakly linear independence.

Definition 3.17 — Weak Linear Independence. Let V| and V, be two subspaces of a linear
space W over a field F. V| and V, are said to be weakly linearly independent if x| +x, = 0 for
x1 € V) and x, € V;, implies that x; = x, = 0. Note that V; or V; can be trivial.

Then the definition of direct sum is as follows.
Definition 3.18 — Direct Sum of Subspaces. Let V| and V; be two subspaces of a linear space
W over a field F. The direct sum of V| and V,, denoted by V| & V», is defined as the sum V| + V,
when V| and V, are weakly linearly independent, i.e.,

VieV,=Vi+W,
when V| and V, are weakly linearly independent.

Recall (Definition 2.10) that W is a finite-dimensional if W = [F" for some positive integer 7. It
is equivalent to saying that W is finitely spanned, i.e., having a finite spanning set.

Proof. If we have a map ¢ : " — W, then W = Span{¢(e1),¢(e2),---,¢(e,)}. However, the
set {¢(e1),P(e2), -, (e,)} may not be linearly independent. Thus, we can always find a min-
imal spanning set of W from it. WLOG, we can say W = Span{¢(e1),¢(e2),---,¢(ex)} for
some k < n. Then using (Proposition 3.7), we have a bijective map @, ¢, ... ¢} : Fk - W =

Span{¢(€1),¢(€2),'~,¢(ek)}. n

Proposition 3.13 W is finite-dimensional if and only if all its subspaces and quotient spaces are
finite-dimensional.

Proof. For subspace U C W and W is finite-dimensional, we have:

W ——+—=U

Fl’l

Then the map ¢ : F* — U is defined by x = ot'&] +--- + a"é, — ¢ (x) = a' ¢ (1) +--- + "¢ (&,,).
Thus, U is finitely spanned, U = Span{¢(¢1),9(é2),--- ,¢(€,)}.
For quotient space W/V and W is finite-dimensional, we have:

Vo1 w L w/v

Then we know that 7(é}),(é,), - ,m(é,) spans W/ V. Thus, W/V is finitely spanned. [
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Proposition 3.14 dim (V| +V,) < dim V| +dim V,. Equality holds if and only if the sum is direct.

Proof. For Vi and V,, we can find the minimal spanning sets S7 and S, respectively. Then we claim
that §; US; spans V) +V,,i.e., Vi +V, = Span{51 USQ}.
This is because for all v € V| +V,, we have v = vy + v, for some v; € V;. Then we can write
j

v; as a linear combination of finitely many elements in S;, i.e., v = ¥ | & s] where o € F and

s{ € S; are distinct. Thus, we have
nj .. 2 .
V=v]+v = Z als] + Z aysj € Span{S;US,}
j=1 j=1

This shows that V; +V, C Span{S; US,}. The other direction is obvious. Thus, we have V; +V, =
Span{S1 USQ}.

Then we have dim (V] +V,) <|S1|+|S2| = dim V; +dim V5, as §; US, may not be a minimal
spanning set. The equality holds if and only if S; U S, is a minimal spanning set of V| + V,, which
is equivalent to saying that V| and V, are weakly linearly independent. Thus, the equality holds if
and only if the sum is direct. u
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3.8 Exact Sequence

Definition 3.19 — Exact and Exact Sequence. A sequence of linear maps between linear
spaces over a field IF,

= Jie1 fi Jir1

Vici

Vi Vit

is said to be exact at V; if

Im(fi—1) = Ker(fi)

i.e., the image of the map before V; is equal to the kernel of the map after V;.
The sequence is said to be an exact sequence if it is exact at every V;.

m Example 3.7 For the following short exact sequence:
i

0 Vi v 72 Vs 0

for which V; is assumed to have a minimal spanning set. Then
e the exactness at V; implies that {Oy, } = Im(0) = Ker(i}), thus #; is injective.
e the exactness at V implies that Im(i;) = Ker(j2), thus Vi =2 Im(i;) C V.
e the exactness at V, implies that Im(j,) = Ker(0) =V, thus j, is surjective.
We can draw an Euler diagram to illustrate the situation:

Im(j2)

Im(0)

There are some facts about the short exact sequence:

e j» has aright inverse, i.e., there exists a linear map i : Vo — V such that j, oip = idy,.
This is because V, has a minimal spanning set. Thus, for each element in the minimal
spanning set of V,, we can choose one representative in V and define the map on the minimal
spanning set. Then we can extend it to the whole space.

e i has a left inverse, i.e., there exists a linear map j; : V — V; such that jj oi; = idy,.
This is because i is injective. Thus, for each element in V|, we can choose one representative
in V and define the map on the whole space by sending all other elements to zero.

The exact sequence becomes:

0—>V1r Vv Vo —=0

There are some equalities about the composition of the maps in an exact sequence.
e jjoij =idy, because jj is a left inverse of 7.

e jroip =idy, because i is a right inverse of jj.

e jpoi; =0 because Im(ij) = Ker(jz).
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e jioiy =0 because Im(ip) = Ker(j).

e ij0jj+ip0 jo, =idy because for all v € V, we have v = (v —i2(j2(v))) +i2(j2(v)) where
v—iz(ja(v)) € Im(i1) and iz (j2(v)) € Im(i2). Also, Im(i;) NIm(iz) = {0y }.

There is actually one more fact about the short exact sequence.

Proposition 3.15 V = Im(i;) @ Im(iy).

Proof. The meaning of V = Im(i;) @ Im(iy) is that for any x € V, it can be uniquely written as
x = x| +x where x; € Im(i;). Why? Suppose x = x| +x = x| +x, where x;,x} € Im(i;). Then
we have (x; —x) + (x —x5) = 0. Note that x; — x| € Im(i;) and x, — x5 € Im(i2). Thus, we have
x; —x; =0 and x; — x}, = 0. This shows the uniqueness.

Note that all V, V| and V, are finite-dimensional. Then V, has a minimal spanning set, let say S.
Then we construct iy : s — iz (s) where i(s) is a choice of element from j; ' (s) # 0 for each s € S.
Then we extend it to the whole space linearly. Thus, i, is injective.

Then we want to prove that Im(i;) and Im(i,) are weakly independent. Assume that x; +x, =0
where x; € Im(i;). Then we have j,(x; +x2) = jo(x1) + j2(x2) = 0. Note that j,(x;) = 0 because
x1 € Im(i;) = Ker(j2), the exactness of V. Thus, we have j»(x2) = 0. However, j, is injective on
Im(i2) because j oip = idy,. Thus, we have x, = 0 and x; = 0. This shows that Im(i;) and Im(i2)
are weakly independent.

Finally, we want to prove that Im(i;) + Im(i,) = V. For all x € V, we let x, = i2(j2(x)) €
Im(i2) and x; = x — x. Then we have to show that x; € Im(i;) = Ker(j2). Note that jr(x) =
J2(x1) + j2(x2) = jo(x1) + j2 0 i2(j2(x)) = ja(x1) + j2(x). This shows that j(x;) = 0. Thus,
x1 € Ker(j2) = Im(i;). This shows that Im(i;) + Im(i) = V.

Actually j is the projection from Im(i;) @ Im(iz) to Im(i;) and it exists due to the uniqueness
of the decomposition. |

The equalities can be summarized as follows:
2
JmOin = 5mniCIVna Z i} O ji = idy
k=1

For the dimension of the spaces, we have:

dimV =dim Im(i;) +dim Im(iz) = dim V; +dim V,

As V) 21Im(iy) and V5 = Im(iy). i) and i are injective and Vi — Im (i) are surjective.

Also, we know that dim V > dim V| and dim V > dim V,. Similarly, we have dim W > dim V

and dim W > dim W/V, where V is a subspace of W.
Consider Proposition 3.14, more specifically, we have the following dimension formula:

dim (Vi +V,) =dim V; +dim V, —dim (V;NV;)

To proof the equality, we can consider the following short exact sequence:

00— Vinh ! Vi z Vi+W)/ Vs ———— 0

Moreover, we have the isomorphism between (V| +V;)/V, and V; / (Vi NV3).
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“No problem is difficult in linear algebra.
All problems are trivial.”

GUOWU MENG

Fudan University Problems

Students from Fudan University asked two hard problems but were completely cooked by Professor
Guowu Meng

The story behind the two problems

“Well, [in] linear algebra basically, no problem is difficult. All problems are trivial.

“People don’t believe me, because many years ago, more than 20 years ago, there were two
exchange students from Fudan University, and when they came here, they carry solution manual
with some sets of hard linear algebra problems. I told them ‘nothing is difficult’.

“They don’t believe me, so they dig out one hard problem from that solution book. Well, I told
them I haven’t seen this problem before, because when I was educated as a physicist engineer, I
don’t work on hard problems. I just deal with textbook. I don’t read anything extra. I don’t know
but doesn’t matter. Let me just write everything on board, and then pretty soon I figured out the
answer.

“Ok may be they say that I am lucky. Then the next day they came back with another problem.
So again, I said I don’t know how to do it but anyway [it] doesn’t matter. I put everything on board,
then I draw some obvious facts in my mind about linear algebra.

“I say no problems are difficult in linear algebra under the assumption that you know linear
algebra inside-out, you know every facts about it. Usually you will say I have seen this type of
problems before, and then step 1, step 2 step 3, but this is a very wrong way to do it. This is the
way that Al does it, but we are human, we are smarter than machine.

“When I do it, there are some keywords and each keywords remind me of some facts related to
it, and keep doing this. Then I see a path from here to there.”

— Guowu Meng on the lecture of September 19, 2025.

Introduction to the two problems

Later, we will examine the two problems that were posed by students from Fudan University and
solved by Professor Guowu Meng. Before examining the two problems, we need to introduce some
basic terminology in standard linear algebra.

Let A be a m x n matrix. Then we consider the following diagram:

Ker(f) CF" %ﬁ F™ 2 Im(f)

In normal linear algebra, we have four fundamental concepts: column space, null space, rank
and nullity.

Definition 3.20 — Column Space. The column space of A, denoted by Col(A), is defined as
the image of the linear map f : " — F™ defined by f(x) = Ax, i.e.,

Col(A) = Im(f) = {Ax | x € F"} CF"
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Definition 3.21 — Null Space. The null space of A, denoted by Nul(A), is defined as the kernel
of the linear map f : " — F” defined by f(x) = Ax, i.e.,

Nul(A) = Ker(f) ={x € F" |Ax=0} CF"

The alternative, or normal, definition of rank is as follows.

Definition 3.22 — Rank. The rank of A, denoted by Rank(A), is defined as the dimension of
the column space of A, i.e.,

Rank(A) = dim Col(A) =dim Im(f) <m

Definition 3.23 — Nullity. The nullity of A, denoted by Nullity(A), is defined as the dimension
of the null space of A, i.e.,

Nullity(A) = dim Nul(A) = dim Ker(f) <n

3.9.3 Problem 1

Problem 3.1 Suppose we have three matrices A, B and C. Then prove that
Rank(B) + Rank(ABC) > Rank(AB) + Rank(BC)

Proof. We consider the following diagram:

0 —— Col(BC) —— c— Col(B) m —» Col(B)/Col(BC) —— 0

LU

A IL id)
! ! ‘

0 ————|Col(ABC) <« c— Col(AB) — m —» Col(AB)/Col(ABC) ———— 0

We denote the injective map with red color and the surjective map with blue color. Notice that
there is a surjective map from Col(B) to Col(AB)/ Col(ABC) due to the surjectivity of A and 7.
Then we denote this surjective map with teal color.

Then we have to consider whether the map from Col(BC) to Col(AB)/Col(ABC) is zero.
If the map is zero, then we can construct a unique surjective map ¢ from Col(B)/ Col(BC) to
Col(AB)/ Col(ABC) due to the universal property of quotient space.

Note that the map from Col(BC) to Col(AB)/ Col(ABC) is a zero map. As both upper and lower
sequences are exact, we have the exactness at Col(AB), i.e., Im(C) = Ker(m,). Thus the composite
map 7 o C is a zero map. This shows that the map from Col(BC) to Col(AB)/ Col(ABC) is a zero
map.

Then we can construct a unique surjective map ¢ from Col(B)/ Col(BC) to Col(AB)/ Col(ABC)
due to the universal property of quotient space.

Finally, we consider the dimensions of the spaces. Note that ¢ is surjective, thus we have

dim Col(B)/ Col(BC) > dim Col(AB)/ Col(ABC)
dim Col(B) — dim Col(BC) > dim Col(AB) — dim Col(ABC)
dim Col(B) + dim Col(ABC) > dim Col(AB) + dim Col(BC)
Rank(B) 4+ Rank(ABC) > Rank(AB) + Rank(BC)
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Problem 2

Problem 3.2 If A is a n X n matrix then prove that
Rank(A") = Rank(A""!)
Proof. We consider the following diagram:

I, —2— Im(A) 24— Im(A?) 2 ... A5 Im(@a") 24— ...

As I, O 1m(A) D Im(A?) D ---, we know that
n=dimI, > r(A) > r(A%) > ...

As the space is finite-dimensional, the sequence will eventually become constant. That means
there exists a k such that for all j > k, we have r(A/) = r(A/T1).

There are two possibilities: either k < n or k > n. If k < n, the equality works properly, as for
every j >k, including j = n, such that r(A/) = r(A/*!) implies r(A") = r(A"1).

For k > n, consider the strict inequality, we know that each time the dimension must drop at
least 1. Without the loss of generality, we may consider the sequence of dimension as n,n — 1,n—
2,---,1,0. This involves n times. So it is impossible to have k > n. [



3.10

3.10 Rank-Nullity Theorem 49

Rank-Nullity Theorem

Actually, using short exact sequence, we can easily prove the rank-nullity theorem.

Theorem 3.1 — Rank-Nullity Theorem. For a linear map f : V — W between finite-dimensional
linear spaces over I, we have

Rank(f) + Nullity(f) =dimV

Proof. Consider the following short exact sequence:

0 —— Ker(f) —— 1% Im(f) —— 0

Then we have V = Ker(f) @ Im(f). Thus, we have dim V = dim Ker(f) +dim Im(f). This shows
that Rank(f) + Nullity(f) = dim V. [ |

Moreover, we have the following corollary.

Corollary 3.2 For a linear map f : V — W between finite-dimensional linear spaces over [, we
have

dim W = Rank(f) +dim Coker(f)

Proof. Consider the following short exact sequence:

0 —— Im(f) < ! w r Coker(f) ———— 0

Then we have W 2= Im(f) @ Coker(f). Thus, we have dim W = dim Im(f) + dim Coker(f). This
shows that dim W = Rank(f) +dim Coker(f). [

Corollary 3.3 For a linear map f : V — W between finite-dimensional linear spaces over [F, we
have

dim V = Nullity(f) + dim Coim(f)

Proof. Consider the following short exact sequence:

0 —— Ker(f) —— 1% i Coim(f) ———— 0

Then we have V = Ker(f) & Coim(f). Thus, we have dim V = dim Ker(f) + dim Coim(f). This
shows that dim V = Nullity(f) +dim Coim(f). [

Moreover, we have the following properties for rank:

1. The rank of a matrix is invariant under elementary row and column operations.
2. Rank(A+B) < Rank(A) 4 Rank(B)

3. Rank(AB) < Rank(A) and Rank(AB) < Rank(B)
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Canonical Form of Linear Map

First, let f : Vi — V; be a linear map between finite-dimensional linear spaces over . Recall that
Ker(f) = f71(0), Im(f) = {f(v1) [ vi € Vi}, Coim(f) = V1/Ker(f) and Coker(f) = V2/Im(f).

We have the following commutative diagram:

Here, each column is an exact sequence, and the square in the middle is commutative, as the
lower left triangle and upper right triangle are commutative.

Moreover, the f’, the universal property for quotient map, is a linear equivalence. It is injective
due to the trivial Ker(f").

s1 and s, are the right inverses or called sections.

With respect to the decomposition of V; and V; into subspaces, i.e., Vi = Im(s;) & Ker(f) and
Vo =Im(f) @ Im(s2), the linear map f is decomposed as follows:

_[Fo
Im(s1) @ Ker(f) ——— Im(f) & Im(sy)

where f : Im(s;) — Im(f) is a linear equivalence, as there are linear equivalences f’ : Coim(f) —
Im(f) and 51 : Coim(f) — Im(s;). Then the graph below commutes:

Im(s;) ——» Im(f)

Coim(f)

Remark. The choice of s; and s is not unique, so the decomposition of V| and V;, and hence f, is not
unique.
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The matrix [{; 8] is the canonical form of the linear map. Just as the canonical form of a
matrix, it reveals the essential structure of the linear map. However, the rank of fis unique, which
is equal to Rank(f) = dim Im(f).

I. 0
00
Fr@anr N FFGB]:FV[*F

Moreover, from the diagram of two exact sequences, we can see that f can be decomposed into
two linear maps: f = 1o f, where f : V; — Coim(f) is a surjective map and t : Coim(f) — V5 is
an injective map. Note that the decomposition is not unique, as we can choose the path from V; to
Coim(f) then to V5.
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Free Vector Space
Let X be a set and 6x = {6, | x € X }. Here 0, : X — F is the §-function at x.

Proposition 3.16 Jy is a linearly independent set of F[[X]] = the linear space of F-valued functions
on X.

Proposition 3.17 Span(8x) = F[X]
Thus, Jx is a minimal spanning set for F[X].
Proposition 3.18 There is a natural set isomorphism X — 8y which maps x to J,.

Then we have an injective set map t : X = 6x — F[X] which maps x to §,. This is a set mapping
to a linear space.

Among all set maps from X to a linear space over F, the set map 1 : X — F[X] is universal in
the following sense:

For any set map ¢ : X — Z, there exists a unique linear map (E : F[X] — Z such that (5 ol =¢.

Proof. Assume the existence of such ¢, then ¢ o 1(x) = ¢ (x) forall x € X, i.e., ¢(8) = ¢(x) for
allx € X. As {8 | x € X'} is a minimal spanning set for F[X], ¢ must be the linear map such that
0 (8;) = ¢(x), thus unique. Existence of ¢ is also proved. [

Via the natural identification of oy = X (8, = x), an element Y 0,6, € F[X], where the sum is
finite and o, € T, is naturally identified with Y a,.x, which is called a formal linear combination of
elements in X. Hereafter, we always use this natural identification, so F[X] is now defined as the
set of formal linear combinations of elements in the set X. Then 1 : X — F[X] is just the inclusion
map : x> X.

The universal map is unique in the following sense: suppose that 1" : X — F[X]’ is another
inclusion map, then there is a unique linear equivalence A in the commutative triangle:
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A exists because 1 is universal, and [ exists because 1’ is universal. Ay = 1 because 1’ is universal,

same for A = 1. Then A is isomorphism.
The universal property implies an assignment of a linear map F[f] : F[X] — F[Y] to any set
map f: X — Y. Indeed,

Moreover, F[1x]| = lpjy] or simply F[1] = 1 for all X, and F[fg] = F[f]F[g] forall f:Y — Z
andg: X —7Y.






“In linear algebra, all the proofs should be
straight-forward. There is no trick. If you
think it’s very hard, there is something
wrong”’

GUOWU MENG

4.1 Categories and Functors

The collection of set maps is denoted by Set and the collection of linear maps over F is denoted by
Vecy. There is a diagram below:

Set
-]

Vecy

where F[—] sends set map f : X — Y to a linear map F[f] : F[X]| — F[Y].
F[—] is an example of functors.
Monoid homomorphisms are another example of functors: in particular group homomorphisms

M,

M,
An element a € M is viewed as an arrow, or morphism, that sends * to %, i.e., a : * — *. Then
ab is viewed as the composition of arrows:

b a
* y % > %
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Recall that a monoid M is a set, which is called a small collection of objects, together with a
binary operation, which is also called composition, on M with both the associtivity law and identity
law satisfied.

By relaxing the condition on binary operation, allowing the composition being partially defined,
we end up with the notion of small category.

Being partially defined means that the composition may not always be defined. For example,
take f: X — Y and g : W — Z, then gf is not defined. But for normal, f: X - Y andg:Y — Z,
then g f is defined. In monoid, as we may suggest there is only one element *, then the composition
is always defined.

An example of a small category: the collection of all matrices over F. We may consider any
m X n matrix as an arrow that sends n to m: A : n — m. If we have a k X m matrix B that sends m
to k, then we have the composition BA : n — k. Note that I, : n — n is the identity, which is not
unique, there can be 1, and I;. We have

A
1!1@ n——>m Dlm

Note that A1, =A = 1,,A and B1,, = B.

Remark. The identity elements are not unique unlike the case of monoid.

The following shows the associativity law:

(AB)C
AB
n ¢ m B k A l
e
A(BC)

Hence, the set of all matrices form a small category.
Consider the set of all invertible matrices over F, it is also a small category, in fact, it is a
groupoid. Groupoid is defined as a small category such that every morphism is invertible.

Categories

Monoids —— Small Categories

Groups —— Groupoids

The graph above shows the relation, the arrows show the subsets relation. The arrow head is the
larger set and arrow tail is the subset.
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Small Categories

Definition 4.1 — Small Categories. A small category is a set C together with a subset Cy of C,
two surjective maps s, : C — Cp and a composition map C x ;) C — C that sends (f,g) to fg
which satisfies the identity law and associativity law.

Here C x, C is defined as the pullback of the diagram below:

Cx,C —2 ¢

-

P2 t

C—— (

where the set C X, C = {(x,y) € C xC | s(x) =1(y)}. Intuitively, the pullback is to filter out the

mappings that can do composition, such as f,g € C X, ;) C where A L B—cC.

The s and ¢ are called the source map and target map respectively. We can picture the
composition graphically as follows:

t(f)  s(f) =1 s(g) t(f)  s(e)

The left diagram is the equivalent to the right one.
We may draw the identity law this way:

L & * A * * & % * <L * D L)

The three diagrams are equivalent.
We may draw the associativity law this way:

f(gh)
gh
f 8 h
* * * *
Vi
(f&)h

m Example 4.1 In the small category of matrices over [, we have
C ={Muxn(F) | myn € N}
Co={l,|neN}=N
If A € C is an m x n matrix, then s(A) = I, = n and t(A) = I,, = m. We can represent A as follows:
A
m n

Note that (A,B) € C x,,C, where the composition of A and B defined as the matrix multiplication
AB, means for some positive integer m,n and k:

A B
* *

m n k
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Remark. Elements in C are morphisms or arrows, and elements in C are identity morphisms. A morphism
f is viewed as an arrow from s(f) € Cy to ¢t(f) € Co, i.e., f : s(f) — #(f). An identity morphism is drawn
in the following way with X being called the object:

*<+*
X X

In the last example, [, is the identity morphism at n. So Cy is also called the set of objects. Then a
morphism f is viewed as an arrow from object X = 1x = s(f) to object Y = 1y =¢(f),ie., f: X =Y.

So, normally, we denote a small category as C and its set of objects as Cy.

Remark. The set of morphisms from object X to object Y is denoted by Mor(X,Y). In the last example,
Mor(m,n) = My, (F), the set of all m x n matrices over F. Note that 1x € Mor(X,X), so Mor(X,X) #0
for all X € Cy.

Then C is the disjoint union of all Mor(X,Y) for all pairs of objects (X,Y):

C= |_| Mor(X,Y)
X.,YeCy

Remark. The composition can be written as follows:
Mor(Y,Z) x Mor(X,Y) —— Mor(X,Z)

L yxEy— x5y

Then the following is the second definition of small category, which is also the normal definition
of a small category.

Definition 4.2 — Small Categories. A small category C is a collection of the following data:
1. A set of objects Cp;
2. A set of morphisms Mor(X,Y) for each pair of objects (X,Y);
3. A composition map Mor(Y,Z) x Mor(X,Y) — Mor(X,Z) that sends (f,g) to fg for each
triple of objects (X,Y,Z);
4. An identity morphism 1y € Mor(X,X) for each object X;
Moreover, these data satisfies the following conditions:
(a) (Identity Law) For all f € Mor(X,Y), we have flx = f = 1y f;
(b) (Associativity Law) For all appropriate morphisms f, g, h, we have (fg)h = f(gh).

For a small category C, the set of objects is denoted by Ob(C) and the set of morphisms for any
pair of objects (X,Y) is denoted by Mor(X,Y), Mor¢(X,Y ), Home(X,Y) or simply C(X,Y).

If we allow Ob(C) and Mor¢(X,Y) for any pair of objects (X,Y) being a class, (a larger
collection than set), we end up with the definition of category.

We say a morphism is isomorphic or invertible if it has a two-sided inverse. A category such
that every morphism is isomorphic is called a groupoid.

m Example 4.2 The collection of all sets and set maps, denoted by Set, is a category. "

m Example 4.3 The collection of all linear spaces over F and linear maps, denoted by Vecr, is a
category. "

m Example 4.4 If C and D are two categories, then we have the product category C x D with objects
(X,Y) and morphisms (f,g), where X € Ob(C), Y € Ob(D), f € Mor¢(X,X') and g € Morp(Y,Y’).



4.2 Small Categories 59

= Example 4.5 The category of set maps between finite sets, denoted by FinSet, is a subcategory
of Set. "

= Example 4.6 Fix an object X in a category C. Then the collection of all morphisms with source
X, denoted by C(X,—), is a new category:

e Objects: all morphisms f: X — Y inC forall Y € Ob(C);

e Morphisms: commutative triangles in C:

X
Y 8 Y

e The identity morphism at object f : X — Y is the commutative triangle in C:
X
/ \
Y 2 Y

m Example 4.7 Let V be a subspace of the linear space W over IF. Then we have a category:
e Objects: all morphisms f: W — Z in Vecy such that f |y=0;
e Morphisms: commutative triangles in Vecy:

w
Z] £ ZQ

Definition 4.3 — Terminal Object and Initial Object. Let C be a category. An object
T € Ob(C) is called a terminal object if for all object X, there exists a unique morphism from X
toT,ie., |C(X,T)| = 1. Anobject I € Ob(C) is called an initial object if for all object X, there
exists a unique morphism from 7 to X, i.e., |C(,X)| = 1.

I Corollary 4.1 A terminal object or an initial object is unique up to isomorphism.

= Example 4.8 In the last example of category, the quotient map 7w : W — W /V is an initial object
and the zero map 0 : W — 0 is a terminal object. "

= Example 4.9 In Set, any singleton set is a terminal object, and the empty set is an initial object.

= Example 4.10 In Vecy, the zero vector space is both a terminal object and an initial object. =
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4.3 Products and Coproducts

4.3.1 Products

Definition 4.4 — Products. Let C be a category and X,Y € Ob(C). The product of X and Y
is an object X []Y together with two morphisms 7y : X [[Y — X and 7y : X[[Y — Y such that
for any object Z and any two morphisms fx : Z — X and fy : Z — Y, there exists a unique
morphism f : Z — X []Y such that the following diagram commutes:

I

X X[IY¥ ———— Y

Remark. The product is unique up to isomorphism if it exists.

Corollary 4.2 Let C be a category and X,Y € Ob(C). Consider the following new category:

e Objects: all morphisms X Bz I yincCforallZe Ob(C);
e Morphisms: commutative diagrams in C:

VA
/ X)
X f Y
fx Iy
Zl

Then the product of X and Y is a terminal object in this new category.

m Example 4.11 In Set, the product of two sets X and Y is the Cartesian product X x Y =
{(x,y) | x € X,y € Y} with the projection maps 7x (x,y) = x and 7y (x,y) = y. Then with f(z) =
(fx(2), fr(z)) for all z € Z, we have the following commutative diagram:

m Example 4.12 In Vecy, the product of two linear spaces V| and V; over F is the direct product
Vi xVa={(vi,v2) | vi € V1,2 € V2} with the projection maps 7y, (vi,v2) = v and Ty, (vi,v2) = va.
Then with f(z) = (fy, (z), fi,(z)) for all z € Z, we have the following commutative diagram:
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Coproducts

Definition 4.5 — Coproducts. Let C be a category and X,Y € Ob(C). The coproduct of X
and Y is an object X [[Y together with two morphisms 1y : X — X[[Y and ty : ¥ — X[]Y such
that for any object Z and any two morphisms fy : X — Z and fy : Y — Z, there exists a unique
morphism f : X [[Y — Z such that the following diagram commutes:

X —% X[y +—2 v

NEX

Z

Remark. The coproduct is unique up to isomorphism if it exists.

Corollary 4.3 Let C be a category and X,Y € Ob(C). The coproduct of X and Y is the initial
object in the new category:

e Objects: all morphisms X 7 YincCforall Z e Ob(C);
e Morphisms: commutative diagrams in C:

= Example 4.13 In Set, the coproduct of two sets X and Y is the disjoint union X UY = {(x,1) |

xeXtu{(»2)|yer} .
m Example 4.14 In Vecr, the coproduct of two linear spaces V| and V; over F is the direct sum
V]@VzZ{(Vl,Vz)‘WEVl,vZEVQ}. n
Biproducts

In Vecy, the product and coproduct are the same, i.e., V| x V, 2 V| & V,. Then we will say the
biproduct of V| and V, and denote it by V| & V,. The following diagram commutes:

V1 X V2

Ty, Ty.

2

Vi %)

l\/l l\/2
VieVs

Definition 4.6 — Biproducts. The biproduct of two objects X and Y in a category C is an object
X @Y that is both the product and coproduct of X and Y.
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Remark. The biproduct exists if and only if the product and coproduct exist and are isomorphic, or if the
initial object and the terminal object exist and are isomorphic.

= Example 4.15 In Vecy, the zero vector space is both a terminal object and an initial object, so
the biproduct exists. "

However, in Set, the empty set is an initial object but the terminal object is any singleton set,
so the biproduct does not exist.

4.3.4 Products and Coproducts of a Family of Objects

In general, we may have the product or coproduct of a family of objects.

Let C be a category and {Xy } «cr be a collection of objects in C indexed by a set /, called the
indexing set. The product of {Xy } e/ is the terminal object in the new category:

e Objects: all collections of morphisms { fy : Z — Xy } e in C for all Z € Ob(C);

e Morphisms: for all o € I, commutative diagrams in C:

The coproduct of {Xg } qes is the initial object in the new category:
e Objects: all collections of morphisms { f : X¢ — Z}aer in C for all Z € Ob(C);
e Morphisms: for all o € I, commutative diagrams in C:

7N

Vfa VS

Xy ¢---="emee- z Xy ———Z

P
T 37 te T
[1Xa HXe

The elements in the product of a family of objects in Vecy can be written as ordered tuples:
(va)acr- The product can be defined as follows:

HVOC ={(va)aer | va € Va}

oel

Then the coproduct can be defined as follows:

@Va ={(va) € [[ Ve | va is finitely supported} C ]V

acl acl oel
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Remark. In general, the product is not equal to the coproduct. They are equal if and only if the indexing
set [ is finite.

Consider the following diagram:

Vo, Vo, Vo Vg
s2(03)
\ 51 (a] )
U Ve .-
oel / Ooc] Oaz 0013 00‘4
s1(a) s1(03)
S —
S] ’ S2 | | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
I T 0 ¢ ¢
(04] (0%) (04] (07}

Remark. The right sections s; and s are two elements in the product []Vy. Note that s, is likely to be
“finitely supported” since it is zero in almost all components shown in the diagram. However, if / is an
infinite set, then s, may not be finitely supported since there may be infinitely many non-zero components
not shown in the diagram. So s, may not be an element in the coproduct @ V,, if I is an infinite set, but
most likely to be.

So the product [TV, contains all possible sections s : I — |JV, so it is called the space of
sections. The coproduct @@ V,, contains all finitely supported sections, so it is called the space of
sections with finite support. The elements in the coproduct @V, written as ordered tuples (vg)ger
can also be written as finite sums Y. ,c; Vo since only finitely many v, are non-zero.

Actually, the product and coproduct are the generalisation of the polynomial ring and the formal
power series ring respectively. We can consider the following diagrams:

s(as) s(3)
\ S(O(]) S(al)

F[s]
S(an) / s(e)
) () s(ou)
S o o0 o0 o

The left shows the diagram in generalised version, but it can be squeezed to the right since all
fibres are the same. So we can consider the set map as s : S — [ as shown on the right.
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Functors

Definition 4.7 — Functors. Let C and D be two categories. A functor F : C — D consists of
the following data:
e Amap F : Ob(C) — Ob(D);
e Amap F : Mor¢(X,Y) — Morp(F(X),F(Y)) forall X,Y € Ob(C);
such that the following conditions are satisfied:
(a) Forall X € Ob(C), we have F(lx) = lp(x);
(b) For all appropriate morphisms f, g in C, we have F(fg) = F(f)F(g).

m Example 4.16 There are two functors from Set to Vecg:

F[-]
Set =———— Vecy

|-
where F[—]| sends set X to the free vector space F[X] generated by X, and a set map f: X — Y to
the linear map F[f] : F[X] — F[Y] induced by f. The functor | — | sends a vector space V to its
underlying set |V|, and a linear map ¢ : V — W to the set map |@| : |[V| — |W| induced by ¢.
The functor F[—]| is called the free functor, specifically the free vector space functor. The
functor | — | is called the underlying functor or forgetful functor. .

For some set X and any vector space V, we can consider the following diagram:

This is called the universal property of free vector space over a set. Here 1 : X — F[X] is the
inclusion map, ¢ : X — V is any set map, and ¢ : F[X] — V is the unique linear map induced by

$.

Remark. The universal property of free vector space over a set can be rephrased as follows: for any set
X and any vector space V, there is a natural identification:

Set(X,|V|) = Vecy(F[X],V)

where Set(X, |V|) is the set of all set maps from X to the underlying set of V, and Vecy(F[X],V) is the
set of all linear maps from the free vector space F[X] to V.

If we consider ¢ : X — |V| as an element in Set(X,|V|), then the corresponding element in
Vecp(F[X],V) is the unique linear map ¢ : F[X] — V induced by ¢.

Note that t = Iy is the identity element in Vecy (F[X],F[X]), so it corresponds to an element in
Set(X,|F[X]|), which is exactly the inclusion map 1 : X — |F[X]|.

Definition 4.8 — Adjoint Functors. Let C and D be two categories. A functor F : C — D is
called a left adjoint of a functor G : D — C, and G is called a right adjoint of F, if there is a
natural identification:

D(F(X),Y)=C(X,G(Y))
forall X € Ob(C) and Y € Ob(D).

m Example 4.17 The free functor F[—] : Set — Vecy is a left adjoint of the underlying functor
| —| : Vecp — Set. This is exactly the universal property of free vector space over a set. "
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Definition 4.9 — Endofunctors. An endofunctor is a functor F' : C — C that maps a category to
itself.

= Example 4.18 Let X be a set. Then we have an adjoint pair of functors:

—xX
Set ——— Set

Set(X,—)

On the left is the endofunctor — x X and on the right is the endofunctor Set(X, —).

S —
Set — X . get Set + X7 gey
Y Y x X Set(X,Y) Y
f —_— fxlx Set(X,f) — f
Z ZxX Set(X,Z7) z

Consider an element g € Set(X,Y), which is a set map g: X — Y. Then the corresponding
element in Set(X,Z) is Set(X, f)(g) = fg: X — Z.
Then we can write the natural identification as follows:

Set(Y x X,Z) = Set(Y,Set(X,Z))

for all sets ¥ and Z. This means that a set map F': Y X X — Z corresponds to a set map F, : ¥ —
Set(X,Z) such thatay € Y is mapped to a set map F; (y) : X — Z defined by Fj (y)(x) = F(y,x) for
all x € X. n

Consider the following two diagrams:

X +— X1 xXp — Xp X —— XiuUXp +——Xp
Fl-] F-]
F[Xl] — F[Xl XXZ] — ]F[Xz] F[Xl] S ]F[Xl |_|X2} — F[Xz]
EF[X]}@F[Xz] EF[X]]@F[Xz]

The left diagram shows that the free functor sends the product of two sets to the tensor product
of two vector spaces. The right diagram shows that the free functor sends the coproduct of
two sets to the direct sum of two vector spaces, i.e., the coproduct of two vector spaces. Note
that the tensor product of two vector spaces is not the product of two vector spaces, as the
dimension of the tensor product is dim (V; ® Vo) = dim (Vi) - dim (V,) while the dimension of the
product is dim (V; @ V2) = dim (V) +dim (V»). There is a unique but not isomorphic linear map
O: ViV, = Ve,

Remark. The left adjoint functor preserves coproducts, and the right adjoint functor preserves products.
This is the consequences of the adjoint functor theorem.

Similarly, we have the following natural identifications:
Vecyp(X ®Y,Z) = Vecy(Y,Vecy(X,Z))

Note that Vecp(X,Z) is a vector space over F, as Vecyp = Homp. Then, we have the following
adjoint pair of endofunctors on Vecr:
—@X
Vecp ———

——— Vecy
Homp (X,—)
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Dual Spaces and Dual Bases

Let V be a finite-dimensional linear space over F. The dual space of V is the vector space
V* = Homp(V,IF), the set of all linear functionals from V to F, or covectors.

Proposition 4.1 Let V be a finite-dimensional linear space over F. Then dim (V*) =dim (V). So,
V* is isomorphic to V but not naturally isomorphic to V.

Proof. Without the loss of generality, we may assume dimV =n and V = F". Then V* =
Homp(F",F) = M;,(F), the linear space of row matrices with n entries. The linear space is
the span of n standard basis row matrices: é!,é2,--- &". So dim (V*) = n = dim (V). We can say
Ve ey, [ |

We have a map ¢ : F" — (F")* D S = {é!,62,---,é"} defined by ¢s(¥) = Y7, x;¢". This is a
vector space isomorphism but not a natural isomorphism, as it depends on the choice of S.

Definition 4.10 — Bases. A basis of a linear space V over [ is the minimal spanning set of V
with an order. The set of all bases of V is denoted by By.

Proposition 4.2 By and By« are naturally isomorphic in Set, i.e., the following natural identifica-
tion holds:

BVEBV*
V= (‘71"—;27"' 7‘771) = (‘717‘}}\27"' aﬁn) ="

where ? € V* is defined by ¥(¥;) = 5]’: forall 1 <i,j<n.

Proof. Consider the following commutative diagram:

V N
v
" # F
The projection map 7; is a linear functional in F” that sends X = (xj,x2,- -+ ,x,) to x;. It is actually
é'. Note that [~]y : V — F" is a coordinate map defined by a basis v = (¥1,¥,,---,¥,) € By such

that [V;]y = ¢; for all 1 < j <n. Itis a unique linear map which identify v; with €;. It can be done
by trivialisation of V with respect to the basis v. Then we define ¥ (¥ i) = 5} forall 1 <i,j<n.

Then we have to consider whether (\91 RIS

-, 7") is a basis of V*. As dim V* = n, we only
need to show that (9,92, --- ") is a spanning set of V* or linearly independent. We have to check
whether the equation Y7, x;#' = 0 for some x; € F has only the trivial solution. Applying it to ¥ I

for all 1 < j <n, we have 0 = YL, x;0'(V;) = LI %0} = x;. So x; =0 for all 1 < j <n. This

means that (191 R ,7") is linearly independent, and hence it is a basis of V*. We call it the dual
basis of the basis ¥ = (vi,vy,---,v,) and denote it by ¥ = (9!, $%,--- ,9").

Then we have to show that there is a unique basis in V* that satisfies ¥'(V;) = 6;. LetV =F"
and v = (V|,¥,,---,V,) be abasis of V. ThenA = [; V, --- V,]is an invertible matrix. Let
(ol - ,a") be a basis of V*. Then we have the following equations:

= |
6] = : Vi n| =1
— o' — ’ |

Then (&, 0, ,0,) = A~'. So the dual basis is unique.
Finally, we have the natural identification: |
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Remark. V = V* but By = By+. The isomorphism V 2 V* depends on the choice of a basis in By, while
the natural isomorphism By = By« does not depend on any choice.

= Example 4.19 Consider the following open subset U of R:

Consider the cotangent vector d f}, at point p for some smooth function f : U — R. Itis a linear
functional df,, : T,U — R defined by df,(i) = Vf(p) -ii for all i € T,U. Here T,U is the tangent
space of U at point p, which is a vector space over R. Note that both ii and V f(p) are depending
on the choice of a coordinate system. However, df), is independent of any choice of coordinate

system. In normal calculus, df), is called the first partial derivative of f at point p, and normally

we write it as g—f(p) and ‘3—’;(1)). .

The dual functor is not naturally isomorphic to the identity functor on Vecy, as (—)* is a con-
travariant functor, while the identity is a contravariant functor, so there is no natural transformation
from idyec, to (—)*.

idvec —)*
Vecp — % Vecy Vecy e, Vecy
Y Y Y Y*
f — f f —_ f
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Double Dual Spaces and Doubles

Consider the endofunctors on Vecg:

(=)™
Vecr ———— Vecy

idVecF

There is a natural transformation from idyec, to (—)** defined by the natural identification: V = V**.
As idyec, and (—)** are covariant functors, there is a natural transformation between them.

|d ec U\ ®%
Vecp — % Vecy Vecy _ e, Vecy
Y Y Y Yy**
f — f f "

Let (—,—) : V* x V — F be the natural pairing defined by (@, u) = o(u) where ot : V — F that
sends u — ou. It is the pairing of a covector with a vector and the map is bilinear.

Definition 4.11 — Bilinear Maps. A map B : U x V — W is called bilinear if for all u € U, the
map B(u,—) : V — W is linear, and for all v € V, the map B(—,v) : U — W is linear.

We have the following natural identification:

vexy — &0 = v Homp (V,FF)

= V—"  Homp(V*,F)

V*xV

where ty : V — V** is defined by ty («) = i such that ii(ot) = at(u). Then V** = Homp(V*,F) = V.

Definition 4.12 — Doubles. Let V be a linear space over F. The double of V, denoted by D(V),
is defined as follows:

D(V)=VaVv*
As V is naturally isomorphic to V**, we have the following natural identification:
D(V)=VaV ' =V'eV™ =DV
The matrix representation of the isomorphism between D(V) and D(V*) is
0 —ly
1 0
where 1y : V — V** is the natural isomorphism defined above. The negative sign is used to make
the isomorphism a symplectic isomorphism, which will be discussed in the later chapters.
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4.7 Natural Transformation and Natural Equivalences

Definition 4.13 — Natural Transformations. Let F,G : C — D be two functors. A natural
transformation M : F — G is a collection of morphisms Ny : F(X) — G(X) in D for all objects
X in C, such that for all morphisms f : X — Y in C, the following diagram commutes:

F(f)

F(X) F(Y)

nx Ny

Gx) —Y . G(y)

Definition 4.14 — Natural Equivalences. A natural equivalence from functor F to functor
G is a natural transformation 1) : F — G which has a two-sided inverse natural transformation
n~':G— F such that nn~! = 15 and n7'n = 1x. In this case, we say that F and G are
naturally equivalent, denoted by F = G.

= Example 4.20 Consider the endofunctors on Vecy:

(=)
Vecr ———— Vecy

idVecF

We have the following natural transformation:

(=) Vi f vy v f—> vy
1l v, | = =~ | Ny,
idvec; Vi ! Vo Vi ! Vs
Then we have the natural equivalence: (—)** = idyec,- ]

= Example 4.21 We have the following natural equivalence:
MapBh(U x V,—) = Homp(U, Homp(V, —))

where both are endofunctors on Vecp. For any linear space Z over I, we have the natural isomor-
phism:

47 - MapBt (U x V,Z) — Homp(U, Homg(V, Z))

= Example 4.22 We have the following natural equivalence:

F®— = idvec, = — ®F = Homg (F, —) = (—)**
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Exact Functors

Definition 4.15 — Covariant Exact Functors. Let C and D be two abelian categories. A
covariant functor F : C — D is called:
e left exact if whenever 0 - A — B — C — 0 is exact then 0 — F(A) — F(B) — F(C) is
exactin D, i.e., it preserves all finite limits;
e right exact if whenever 0 - A — B — C — 0 is exact then F(A) — F(B) — F(C) = 01is
exact in D, i.e., it preserves all finite colimits;
o exact if it is both left exact and right exact.

Definition 4.16 — Contravariant Exact Functors. Let C and D be two abelian categories. A
contravariant functor G : C — D, it is called:
e contravariant left exact if whenever 0 - A — B — C — 0 is exact then 0 — G(C) —
G(B) — G(A) is exact in D;
e contravariant right exact if whenever 0 — A — B — C — 0 is exact then G(C) — G(B) —
G(A) — O is exact in D;
e contravariant exact if it is both contravariant left exact and contravariant right exact.

» Example 4.23 The dual functor (—)* : Vecp — Vecr is a contravariant left exact functor, as it
sends a short exact sequence 0 — U — V — W — 0 to a left exact sequence 0 — W* — V* — U*.
Moreover, U — V — W is exact if and only if W* — V* — U™ is exact. Also, the map U — V is
injective if and only if the map V* — U™ is surjective; the map U — V is surjective if and only if the
map V* — U* is injective. This can be shown by considering the following two exact sequences:
0—-U—=VandU —V —0. "

In general, the hom-set functor Hom¢ (X, —) : C — Set is a covariant left exact functor for any
object X in an abelian category C, and the hom-set functor Hom¢(—,X) : C — Set is a contravariant
left exact functor for any object X in an abelian category C.

m Example 4.24 The tensor product functor — ® V is a covariant right exact functor, as it sends a
short exact sequence 0 - U — V — W — 0 to aright exact sequence U QV - VRV =WV — 0.

Note that the tensor product functor is a left adjoint functor, and left adjoint functors are right
exact in general, while the Vecy(V, —) functor is a right adjoint functor, and right adjoint functors
are left exact in general.
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5.1 Tensor Products

Let U and V be two fixed linear spaces over [F and Z be any linear space over IF. Consider the set of
all bilinear maps from U x V to Z, denoted by MapBL(U x V,Z). It is a vector space over [ as it is
a subset of Map(U x V,Z), the set of all maps from U x V to Z.

By the universal property of tensor product, we have a natural identification:

MapBh(U x V,Z) = Homp(U @V, Z)

Note that both are naturally identical to Homg(U,Homp(V,Z)). Also note that Hom(—®V,Z) =
Hom(—,Hom(V,Z)) is a tensor-hom adjunction.

The natural identification is the universal property of tensor product. Consider the following
commutative diagram:

v
v,
1 //;
g
UV

Note that the map 1 and ¢ are bilinear maps, and the existence of the unique linear map ¢ follows
from the universal property of the tensor product. We can also consider it as the initial object in a
new category:

e Objects: all bilinear maps ¢ : U x V — Z for all Z € Ob(Vecr);

e Morphisms: commutative diagrams in Vecy:
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The existence of tensor product follows from the existence of free vector space over a set and
the existence of quotient spaces.

Consider the following commutative diagram:

UxV
z y v
EITY
Tyv — F[U X V] -=----=2--—-- 4
T /,/’/aup

F[U X V]/IU,V

where 7y v is the subspace of F[U x V| generated by the following elements for all u,u;,u, € U,
vwi,m €Vanda,fB €F:

o (auy+ Puz,v)—a(uy,v) — B(uz,v);

o (u,ovi+Bv2) —a(u,vi)—B(u,v2);
Why the construction of Zy y is like this? This is because we want 1 to be a bilinear map. Then
t(ouy + Bua,v) = ot (uy,v) + Pi(uz,v) and 1(u, avy + fvo) = ot (u,vy) + Pi(u,v2). This means
that the elements in Zy y should be mapped to 0 by 1. So we have to quotient F[U x V] by Zy v to
make 1 a bilinear map.

We define U @V =F[U x V|/ Iy v and this shows the existence of tensor product.

Remark. The inclusion map 1 : U XV — U ®V is ‘surjective’ in the sense that the image of 1 spans

U®V,ie. Span(Im(1)) = U ®V. To know ¢, it suffices to know ¢ (u®v) = ¢ (u,v) for all u € U and
vev.

We can talk about the tensor product of k linear spaces with k£ > 2. Moreover, the tensor
product is associative and commutative up to isomorphism, i.e., Vi@V, @ V3 = (Vi @ V,) @ V3 =
Vi ® (Vo ®V3) and Vi @ Vo = V, ® V). Both of them are natural isomorphisms.

VixVoxVy — s VieWhWs VixV, —— Vi®W,
| I 1 I
Vi) xVs ——— (Vi@WV) Vs VoxVi — VLV,

We have a natural equivalence:
Hom(U,V®@W) =Hom(U,V)@W

Then we can prove that Hom(V;,V2) = Vi @V, and (V; @ V2)* = V" ®@V;'. Also, we have the
following equation, by considering V; ® Vo, = Hom(V{*,V»):

dim (V®@W) =dim (V)-dim (W)
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If e is a minimal spanning set of V| and f is a minimal spanning set of V,, then e® f is a
minimal spanning set of V; ® V,. Moreover, we have End(V) = (End(V))* and the identity map 1y
corresponds to the frace map tr : End(V) — F under this identification.

We also have the distribution of tensor product over direct sum: V; @ (Vo & V3) = (Vi @ V) @
(Vi ® V3). Moreover, Hom(V},V, @ V3) = Hom(V;,V,) @ Hom(V,V3) and Hom (V) @ V,,V3) =
HOm(Vl,V3) X Hom(Vz,V3).
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Algebras

Definition 5.1 — Algebras. An algebra over a field [ is a linear space A over F equipped with
a bilinear product map A x A — A, or equivalently a linear map A ® A — A.

m Example 5.1 The set of all polynomials in 7 with coefficients in I, denoted F[¢], is an algebra
over F. As F[t] x F[t] — FJt] defined by (f,g) — fg is a bilinear map. Moreover, F[f] has a
multiplicative identity 1 € F[t], fg = gf forall f,g € F[t], and (fg)h = f(gh) for all f,g,h € F[t].
So [F[¢] is a unital commutative associative algebra over F. "

= Example 5.2 The set of all square matrices with order n over I, denoted by M., (IF), is an algebra
over F. As My, (F) X Mysn(F) — M, (F) defined by (A, B) — AB is a bilinear map. Moreover,
My, (F) has a multiplicative identity I, € M, (F), (AB)C = A(BC) for all A,B,C € M,,»,(FF).
However, in general AB # BA for some A,B € M,,,(F). So M,,,(IF) is a unital associative algebra
but it is a non-commutative algebra over F. "

= Example 5.3 The 3-dimensional Euclidean space R? with the cross product x : R? x R? — R3
is an algebra over R. As the cross product is bilinear. However, it does not have a multiplicative
identity, not associative and not commutative. So R? with the cross product is a non-unital non-
associative non-commutative algebra over R. "

Remark. (R3,x) is an example of a simple real lie algebra. It is the lie algebra of the lie group SO(3),
the special orthogonal group in dimension 3, i.e., the 3-dimensional rotations. (R3, x) is denoted by
50(3). Also, it is the lie algebra of the infinitesimal symmetries of a pointed 3-dimensional Euclidean
space.

Definition 5.2 — Lie Algebras. An algebra is g over a field IF is called a lie algebra if the lie
bracket or lie product [—, —] : g x g — g satisfies the following two conditions:
e Skew-symmetry: [x,x] =0 for all x € g, i.e., [x,y] = —[y,x] for all x,y € g if char(F) # 2;
e Jacobi Identity: [x, [y,z]] + [y, [z,x]] + [z, [x,¥]] = O for all x,y,z € g.

Definition 5.3 — Graded Linear Space. A linear space V, over F is called a Zx>¢-graded
linear space or graded vector space if it is a direct sum of linear subspaces V,, for all n € Z>q:

The elements in V,, are called homogeneous elements of degree n. If v € V,, is a homogeneous
element, we write deg(v) = n.

Definition 5.4 — Graded Linear Maps. A linear map ¢ : V, — W, is called a graded linear
map with graded degree k > 0 if ¢(V,,) C W, for all n € Z>,.
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5.3 Tensor Algebras
Let V be a finite-dimensional linear space over [F. We define a new notation:

VS =—Vveove -V
~— ———

k times

for all k > 0. Note that V¥ =F. Also, dim (V) = (dim V)* for all k > 0.
We define the tensor algebra of V over F, denoted by TV, as follows:

TV=@PVv*=FavaVeV)e(VaveV)e: -
k=0

The tensor algebra 7V is an algebra over F with the bilinear product map defined by the tensor
product:

@ :TVXTV =TV
which sends (¥, un, Y Vin) t0 X0 1 (thn @ Vi)
Remark. As the algebra product is bilinear, it suffices to know the product of two homogeneous elements,

ie., VO x VM — TV for all n,m > 0. So T°V is a Z>(-graded algebra over F. As the tensor algebra
is bi-additive, we have the following equality:

Zun®zvm = Z(un®zvm) = ZZ(”"®VM) = Z(uﬂ@vm)

n,m

Then to define the bilinear product above, we have to define the tensor product of two homoge-
neous elements:

VR x y e TV

V®n ® V®m

We have to prove the existence of the bilinear map V" x VE™ — Vtm) for all n,m > 0. We
can prove it by the following commutative diagram:

n times m times

V®nxv®m — VR RQVIAVR---QV

I

(VX xV)x(Vx---xV)

A

n times m times
Vx--xV V-V
~—_—— —_———
n-+m times n-+m times

The proof used a lot of universal properties of tensor products. Note that the map ¢ is a multilinear
map and ¢ is a linear equivalence.

So we have proved the existence of the bilinear product map ® : 7*V x T°V — T°V. Then
TV is an algebra over F.
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Remark. The tensor algebra (7°V,®) is a graded unital associative algebra over FF. It is graded, as it
is degree additive, i.e., VE" x V& — VE0tm) for all n,m > 0. It is unital, as V0 —F x V& — y@m
and the reverse. The multiplicative identity is 1 € FF. It is associative, as (1 ®@v) @ w=u® (v@w) for all
u,v,w € V and the associativity can be extended to all homogeneous elements by bi-additivity. However,
in general it is not commutative, as u ® v # v @ u for some u,v € V.

There is a universal property of tensor algebras. Consider the following commutative diagram:

Note that V =V®!' =0@V ®0®--- C T°V and 1 is the inclusion map. Here A* is any graded
unital associative algebra over IF and ¢ : V — A® is a graded linear map with graded degree 0. Then
there exists a unique graded algebra homomorphism with graded degree 0 ¢ : 7*V — A® such that
¢ o1 = ¢. This shows the universal property of tensor algebras. More specifically, the map ¢ is a
map from V to the degree 1 part of A°, i.e., ¢ : V — Ay, then with an inclusion map.

The tensor algebra construction is actually a functor from Vecr to the category of graded unital
associative algebras over IF, denoted by Z>o — Algp:

Vecy — L 7. —Algy

1% TV
i e A

w TW

where 7°f : T°V — T*W is the unique graded algebra homomorphism with graded degree 0 such
that T*foly =twof. Herety : V — T°V and tyy : W — T*W are the inclusion maps.

The existence of the functor 7 follows from the universal property of tensor algebras. It is
called the free graded algebra functor, normally the “unital” and “associative” will be omitted.
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5.4 Quotient Algebras

In this section, we will discuss three quotient algebras associated with a vector space V: the
symmetric algebra, exterior algebra, and universal enveloping algebra.
Before that we need to introduce the concept of ideals in algebras.

Definition 5.5 — Ideals of Algebras. An ideal of an algebra A over a field IF is a non-empty
subset / of A which is closed under linear combinations and algebra multiplications by elements
in A. Thatis, forall x,y € I, o, B € F and a € A, we have:

e ax+Byel,

e axclandxa €<l

Simply speaking, an ideal is a generalisation of a rule to an algebra.
The following is an example of an ideal in a ring, which is an example of ideal in a more general
concept.

m Example 5.4 Consider the ring of integers, Z. The set of all n-multiples, denoted by nZ, is an
ideal of Z for all n € Z. As it is closed under addition and multiplication by any integer. "

5.4.1 Symmetric Algebras

The symmetric algebra of a vector space V over a field F, denoted by S°V, is defined as the
quotient algebra of the tensor algebra 7°V by the ideal of 7V generated by elements of the form
uRXv—vuforallu,veV:

SV=TV/ZIs=TV/(uv—vyQu|uveV)

The Zs- is called the symmetrising ideal of T*V . It is actually the ideal completion of the relation

u®v=vQuforall u,v € V. We use (—) to denote the ideal generated by a set.

Then the elements in S*V are equivalence classes of elements in 7°V. We have uv € S*V as
the equivalence class of u®@v € T°V denoted by [u® v]. Note that uv = [u®v| = [v@u] = vu in
S'V,as [u®@v—v®u] =0. So the product in S*V is commutative.

Remark. Symmetric algebra is still a graded algebra. As the ideal Zs. is a graded ideal, i.e., Zs. =
Br_o(Zs- NVEF).

Similar to tensor algebras, we have the following expression:
SV =stv
k=0

where S*V is the k-th symmetric power of V.
We also have the following universal property of symmetric algebras. Consider the following
commutative diagram:

Here A* is any graded unital commutative associative algebra over F.
Similarly, S*V is the free graded commutative algebra functor from Vecr to the category of
graded unital commutative associative algebras over I, denoted by Z~o — CAlgy:
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Exterior Algebras

The exterior algebra of a vector space V over a field I, denoted by A"V, is defined as the quotient
algebra of the tensor algebra 7V by the ideal of 7°V generated by elements of the form v® v for
allveV:

NV=TV/Ipe=TV/(v@v|[veV)=TV/v@w+wav|vnweV)

The Z)- is called the alternating ideal of T*V. It is actually the ideal completion of the relation
v®@v=0forall veV, or equivalently v®w = —w®v for all v,w € V. Sometimes the exterior
algebra is also called the skew-symmetric algebra. Note that the characteristic of the field F should
not be 2, i.e., char(F) # 2, otherwise v@w = —w®v implies that v w =w®v.

Then the product in A"V is called the exterior product or wedge product, denoted by A. We have
uAv=—vAuin A’V for all u,v € V. So the product in A"V is skew-commutative.

Remark. Exterior algebra is still a graded algebra. As the ideal 7y is a graded ideal, i.e., Zp- =
Dio(Zp-NVE).

Then we have the following expression:
. N Ak
AV=DAV
k=0

where AV is the k-th exterior power of V.
We also have the following universal property of exterior algebras. Consider the following
commutative diagram:

Here A* is any graded unital associative skew-commutative algebra over F.
Similarly, A"V is the free graded skew-commutative algebra functor from Vecy to the category
of graded unital associative skew-commutative algebras over F, denoted by Z>o — SAlgy:

Universal Enveloping Algebras

Let g be a lie algebra over a field F. The universal enveloping algebra of g over I, denoted by
Ug, is defined as the quotient algebra of the tensor algebra 7°g by the ideal of 7°g generated by
elements of the formx®y —y®x — [x,y] forall x,y € g:

Ug=T'g/Ty=T'g/ x@y—y@x—[x,y] | x,y € g)

The 7y is called the lie ideal of T*g. It is actually the ideal completion of the relation xy — yx = [x,y]
for all x,y € g.

Remark. However, the universal enveloping algebra is not a graded algebra. As the ideal Z;, is not a
graded ideal. The x®y —y®xis in g®2 but [x,y] is in g©!.
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Hilbert-Poincaré Series

Let V, = @;>¢Vi be a Z>(-graded finite-dimensional linear space over a field F. The Hilbert-
Poincaré series of V, is defined as the following formal power series:

Py (t) = idim (V) '
i=0

m Example 5.5 The Hilbert-Poincaré series of the tensor algebra 7V is:

S NN (i U 1
PT-V(Z):;)dIm (V®>l :;)<dlm V) t :m

= Example 5.6 The Hilbert-Poincaré series of the symmetric algebra SV is:

= = dmVaio1 i
Psey (1) =} dim (S'V) 1 =Z< ; )f = =7
i=0 i=0

m Example 5.7 The Hilbert-Poincaré series of the exterior algebra A"V is:

P/\'V(t) = gdim (/\[V) - i <dinj| V>ti _ (1 +t)dimv

i=0 l
[ |

As the Hilbert-Poincaré series of the exterior algebra AV is a polynomial of degree dim V,
we have A*V = 0 for all k > dim V. Especially, if dim V = n, then A"V is 1-dimensional and
A"V = 0. This is because any (n+ 1) vectors in an n-dimensional vector space are linearly
dependent, so the exterior product of them is 0. Moreover, dim (A*V) = dim (A" V) for all
0<k<n.

Any one-dimensional linear space is called a line.
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6.1 Determinant Lines

We have known that the top exterior power A"V of an n-dimensional vector space V over a field F
is 1-dimensional. So we can define the following:

Definition 6.1 — Determinant Lines. The determinant line of an n-dimensional vector space V
over a field I is defined as the top exterior power of V:

detv=N\"v=A""v

Note that the det = A* is a functor from the category of vector spaces with n-dimensions Vecy
to the category of vector spaces with 1-dimensional, i.e., the category of lines, Vec]} for all k£ > 0:

Vecy N Vec}:
Vi /\”V1 =detV
flo > N'f=det f
V2 N'Vo =detV;

As det is a functor, we have the following two properties:
det idy = idget v, det fg =det f-detg

In particular, if f € End(V), then det f : det V — det V is a multiplication by a scalar in F. So
we can identify det f with a scalar in IF. This scalar is called the determinant of f and is denoted
by det f.
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Consider the following commutative diagram:
'

[-ls [-ls

A

where V is an n-dimensional vector space over IF, 3 and B’ are two bases of V, f € End(V), A and
A’ are the matrix representations of f under the bases 13 and B’ respectively, and P is the change of
basis matrix from 5 to . Then by focusing the red and blue commutative square, we have:

AP=PA', A=pPAP!

Then we have:

det A =L det £ 2L det A’

In ordinary linear algebra, A and A’ are called similar matrices, i.e., A ~ A’. This means they
represent the same endomorphism, so they have the same determinant.
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Permutation Groups

Before we derive the explicit formula of determinants, we need to introduce the concept of
permutation groups.

Definition 6.2 — Automorphisms. An automorphism is an isomorphism from a mathematical
object to itself.

Definition 6.3 — Automorphism Groups. The set of all automorphisms on a mathematical
object X forms a group under the composition of functions, denoted by Aut(X).

» Example 6.1 The general linear group GL(V) of a vector space V over F is the group of all
invertible linear maps from V to V, i.e., GL(V)) = Aut(V). The group operation is the composition
of functions. "

m Example 6.2 The general linear group GL,(IF) of degree n over I is the group of all invertible
n x n matrices over F, i.e., GL,(F) = Aut(IF"). The group operation is the matrix multiplication.
Note that GL,(F) = GL(F"). Also note that the group is not abelian if n > 2. .

Definition 6.4 — Permutation Groups. A permutation group S, on asetn:={1,2,--- n}is
the group of all bijections from n to itself, i.e., S, = Aut(n). It is called the symmetric group on
n elements. The group operation is the composition of functions.

Then the order of S,,, denoted by |S,

,isn!.
» Example 6.3 The permutation group S, has two elements: the identity permutation 1 and the
transposition o} defined by 61(1) =2 and 01(2) = 1. .

Instead of writing S, = {1,071}, we can write S, = (0] | 612 = 1), where o) is called the
generator of S, and 612 =1 is called the relation of S;. This is called the presentation of S,.
In general, the generator o; of S, is defined by:

J+1 j=i
ci(j)=<j—1, j=i+1 =({ i+1)
J, otherwise

m Example 6.4 The generator 7 of S3 can be represented by the following diagram:

1 2 3

N
\1

It can also be written as 67 = (1 2) or (1 2)(3) or <; ? 2) .

Moreover, we have a cycle with 3 elements denoted as (1 2 3) defined by the <; i ?)

Then the presentation of S5 is:
S3= f=1lo05=1 =
3=(01,02| 0] = 1,05 = 1,010,601 = 0,010,)
In general, the presentation of S, is:
2 .
S, = <61,02,' ©,0p—1 ‘ O; = 1,6,'6]' = 0;0; (|l—]| > 1),6i6i+16i = Gi+16i6i+1>

The last two relations are called the braid relations:
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o Far commutativity: 0;0; = o;0; forall |i — j| > 1;

e Braid relation: 0;0i110; = 0j+10;0;+1.

The permutation group S, is generated by quotienting the braid group B, by the relations 61-2 =1
forall 1 <i<n—1. We call B, the braid group on n strands. A simple way to visualise the braid
group is to think about braiding » strands of hair. The braid group B,, has the same presentation as
S, except that there is no relation G,-z =1forall 1 <i<n-—1. Consider the following diagrams:

1 2 1 2 ! 2
\
O] \ O]
1 2 2 1 I
1 2

Consider the following exact sequence:

1 A, © s, — &

(£1} ——— 1

where A, is the alternating group on n elements, i.e., the subgroup of S, consisting of all
even permutations, and Sgn : S, — {£1}, the sign homomorphism, is the unique group ho-
momorphism such that Sgn(o;) = —1 for all 1 <i<n—1. Note that Ker(Sgn) = A, and
Im(Sgn) = {£1}.

Remark. A, is simple for all n > 5. This means that A,, has no non-trivial normal subgroups for all n > 5.

Then we have two properties of the sign homomorphism:
e Sgn(l)=1;
e Sgn(ot)=Sgn(o)-Sgn(t) forall 0,7 € S,,.
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6.3 Universal Property of Exterior Powers

We have known that the k-th exterior power AV of a vector space V over a field [ is the quotient of
the k-th tensor power V¥ by the alternating ideal. So, consider dim V = n, we have the following
commutative diagram:

n times

,—/_ V2
VXVx--xV 4 — Z
IJ: /,/’/:,’/
on -
e e
nl /’/
4
Here Z is any vector space over Fand ¢ : V XV x --- XV — Z is an alternating (skew-symmetric)
multilinear map, i.e., ¢(vi,va,---,v,) = 0if v; = v; for some i # j. Then there exists a unique
linear map ¢ : A"V — Z such that ¢ omo1 = ¢. This shows the universal property of exterior

powers.
Also, we can consider the A¥ as a functor applied to the map f : V — W. Then we have
A F: AV — A*W. Then the following diagram commutes:

k times k times

VXV Xx---xV M>W><W><~--><W

V| A A AT | FEDASF)A-Nf ()

n times

T —
Note that the permutation group S, actsonV XV x --- XV by:
G;: (V],Vz, e 7Vn) = (V],Vz, Vi1, Vi1, Vi Vig2, 7v")
By the universal property of exterior powers, we have:

n times n times

——— :
VxVxoxV — % sV xVx---xV

Consider that a Ab = —b A a. Then in general, we have:
PAQ=(-1)PIQAP

where P € APV and Q € A\?V. This is called the graded commutativity of exterior algebras.
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6.4 Determinants and Duals

Let V be an n-dimensional vector spaces over F and By = {vy,v,---,v,} be a basis of V.
As det V is a 1-dimensional vector space, so there is a basis. So the basis of det V is actually
equivalent to det V' \ {0} Then we have a map from By to Byt v defined by:

V=(vi,v2,,vn) = ViAvA---Av, =det V€ detV
Then we have the following commutative diagram:

Bvx = BV

Bdet V* = Bdet \%4

Note that (det v)* = det v where v € By. So we have the following equivalence:
det v* =det v = (detv)*

The first equivalence is because of the commutative diagram above, and the second equivalence is

because of the definition of dual basis. ‘
n times

—N
Consider L be a line over F and L defined as LQL® - -- @ L. Also, L° is defined as FF. Normally,
we have L* ® L — F. However, as L is 1-dimensional, we have the following isomorphism:

L'QL=T

Then L* is regarded as L™, and they from a group under the tensor product operation, ({L*},®)
where k € Z.

Consider V; and V, are two n-dimensional vector spaces over [F. Then we have the following
diagram:

f v =) vy A

V1 VZ*

det det

det V; L det Vp ====2 det V[ L det Vf

Then we consider the left part, we have:
det f € Hom(det V;,det V;) = (det V})* @ det V,
Similarly, for the right part, we have:
det f* € (det V;)* @det V|" = (det V2)* * @det V|" = det V, @ (det V})*

Note that the first equivalence is due to det V* = (det V)*. As the tensor product is commutative,
we have:

det f* =det f
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Determinant Formula

Consider the following diagram:

" A F"

det

det P —det4 o get ™

Given the standard basis B = {€},é,--- ,é,} of F", we have:
det B=2 A& A---N&,
Note that

—

A= Zl] ﬁz o dp

Consider the map det A : det B — det A - det B where det A € F is a scalar, we have
detA-det B=Aé NAé N---NAé, =d| Nda N\---Ndy

So, we know that det A is multilinear and alternating in the columns of A. Also, det/ = 1.
Consider the elements of A as d; = ZZ: 1 aljj é;; forall 1 < j <n. Then we have:

AN Ndy=Y d\'& N---NY arg, = Y al---ay (@ N NE)

i=1 in=1 i in=1

We assume that €;, are mutually distinct for all 1 < k < n. Otherwise, the term is 0 because of the
alternating property of exterior products. So there exists a unique permutation ¢ € S, such that
irx = o(k) for all 1 <k < n. Then we have:

ainN---ANad, = Z a?(l) a}‘:(") (Eo'(l)/\"'/\ga(n)) — Z af(l) ,..ag(") Sgn(G) (Zl/\.../\é’n)

cEeS, cES,

Hence, we have the formula of determinants:

detA= ) Sgn(o) a®Ma@ ... g8

oEesS,

M, 0@ o

ay”---a; ", they are in distinct rows and in
distinct columns. They are in distinct columns because of the subscript of af(j ) is jforalll <j<n.
They are in distinct rows due to the o, otherwise it will be zero because of the alternating property of

exterior products.

Remark. For the magnitude part in the formula, af
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Properties of Determinants

The det A has the following properties:

e Linear in each column: forall 1 < j <n;

e Alternating (skew-symmetric): ---d;---dj--- = —---d;---d;--- forall i < j;

e det/=1;
For the alternating property, we have the following evaluation from the original definition of wedge
products (we assumed that char(F) # 2):

k times
a; djoo= (=1%o Gid) -
=(=Dk Qd;- -
= — GG

Moreover, the three properties above uniquely determine the determinant function.

Remark. The first two properties can be defined on the rows of A as well and they still hold. This is
because the determinant of a matrix is equal to the determinant of its transpose, which is the matrix part
of det f* = det f shown in the previous section.

If we drop the last property, then the function is called the alternating multilinear form. Suppose
that ¢ : M,,,(F) — F is an alternating multilinear form, then we have:

¢(A) =detAd(ly)
Proposition 6.1 The following equality holds:

Ay

det [ *} =detA;-det A,

0 A

Proof. Consider the part on the left-hand side, we know that it is multilinear in the columns and
alternating. Then we have the following evaluation:

A | Inl *
det [0 AJ —=detA; -det {0 Az]

. I, *
—=det A -det A, -det [O Inz]

_ L, 0

—detA;-det A, -det [ 0 In2:|

=detA|-detA; -detl, 1, =detA;-detA;
For the last equality, as we know the following property:

Note that k can be 0 as well. Therefore, we can eliminate all the * in the matrix by using the above
property without changing the determinant value. |

Instead of writing det , we can use two pipes to denote the determinant. Concretely, we have
the following determinants:

1 x % % 1 0 0O 1 000
1 1% * =* 110 0 O
= 1 = 1 =|I5|=1
1 1 1
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For the first equality, we eliminated the first row’s * by using the first row. For the second equality,
we eliminated the second row’s * by using the second row.

So, for block upper-triangular matrices, its determinant is equal to the product of the determi-
nants of the diagonal blocks. Same for the block lower-triangular matrices.

In particular, we have the following equation:

a - *
=dail---dpn

0 - ap
Also, det [a] = adet [1] = a.

Remark. In determinant, we prefer to use a;; to denote the element in the i-th row and j-th column
instead of using superscript and subscript like a. This is because in determinants, we usually consider
the rows and columns instead of vectors.

Consider the following determinant:

the j-th column

!

* 0 * aiy oo a1 1oaijr e ai
thei-throw — (dil oo @ ;1 1 a1 - ain :(_l)ifl . . )
* 0 *
1 aiy aij din
:(_1)1'714’]'*1 0 A
J

= (=1)"/det A}

Here, a; ; means that the element ¢; ; is omitted, and A; is the submatrix obtained by deleting the
i-th row and j-th column of A.
Then we can consider general matrix A, for any j, we have:

detA=det[-- @ -]

i=1

n

i i+ i
1aj(—l) /det A}

1

This is called the cofactor expansion or Laplace expansion along the j-th column. Similarly, we
can have the cofactor expansion along the i-th row.
Then we have the definition of adjoint of a matrix.

Definition 6.5 — Adjoint Matrices. The adjoint matrix of A, denoted by Adj A, is defined as
the matrix whose (i, j)-th entry is (—1)""/det A/.
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Remark. Be aware of the notation difference between Alj and A‘j The former means deleting the j-th
row and i-th column, while the latter means deleting the i-th row and j-th column. Also note that the
notation of €; means that the i-th row is 1 and other rows are 0 (standard basis vector), which is different

from the notation in A{ and A’j To conclude, the subscript is for columns and the superscript is for rows,
except they are in the notation of standard basis vectors.

Proposition 6.2 The following equality holds:
A-AdjA=AdjA-A =detAl,
In particular, if det A # 0, then A~!

- detAACIJ A.

Proof. In particular, we just have to show
Zn: (AdjA): = detAé"
Fro;n the previous Laplace expansion, we know:
det A = Za 1) */det A = iaj.(Ade){ = (A-AdjA)’
i=

i=1

Then we know that for i = j, the equality holds. If i # j, then we can consider the following
determinant:

the j-th column

det |... 5j o aj =0

f

the i-th column

This means that originally, there are two same columns in the determinant, so its value is zero.
Then by the Laplace expansion along the j-th column, we have:

0= Za 1)/ det AF = Za (AdjA); = (A-Adj A)}

To better understand the reason why the equality holds when i # j, we can consider the
following explanation [1]. Consider the 3 x 3 case:

A% —A% A{’ a} aé aé

-Al A} Aot & &

3

1

1 2 3 3 3 .3
A3 —A3 A3 a; a, a
AdjA A

If we multiply the first row of Adj A with the first column of A, we have the same result as the
Laplace expansion along the first column:

1 1 1

a, a, a
1 4y 43

alAl —alAT 4 aiA = a7 @3 a5 =detA = Za/]Ak Zal (AdjA)}
a? a% ag k=1 k=

If we multiply the first row of Adj A with the second column of A, we have:

11
a, a; das

3 3
141 242 343 | 2 2 20 0 — kak _ k R 1
Clel —a2A1 +(12A1 = a% a% a% =0= ZazAl = Zaz(AdJ A)k

a, a; dajs
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Vandermonde Determinant

Consider the following determinant; here, the superscript means the power:

1 | T |
'xl x2 e _xn
detV, =
n—1 n—1 —1
xl x2 e xz
Then we consider x,x,,- -+ ,x,—1 are fixed and we consider the determinant as a polynomial of x,,.

Note that the degree of x, is n — 1, and the polynomial is:

X1 X2 e Xp—1
det Vy = (1)) (=12 oo oot (1) ”

Also note that if x, = x; for some 1 <i<n—1,letsay i = n— 1, then the determinant becomes:

1 1 cee 1 1
X1 X2 o Xp—1 Xp—1
=0
n—1 n—1 n—1 n—1
X1 X A X

This means that x,, — x; is a factor of the polynomial. Therefore, by the fundamental theorem of
algebra, we have:

n—1 factors

det V, =C (xy —x1) (X —x2) -+ (X — Xp—1)

Here C is a constant that does not depend on x,,. To find C, we can consider the coefficient of x~!.
Note that the coefficient of x”~! in the above polynomial expansion is det V,,_;. So C =det V,,_.
Then by induction, we have:

detV,, = H (xj—x,')
1<i<j<n
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6.8 Feynman Diagram Formula

Consider the case where char(IF) = 0. Let A be a n x n matrix and / be the identity matrix of order
n. Then we have the following formula:

(trA)?  trA?
2! 2

det(I+tA):1—trAt+< )t2—~-+(—1)"detAt”

This is called the Feynman diagram formula, as it is inspired by Feynman diagrams in quantum
field theory. From this formula, the determinant can be expressed by traces.

It is hard to remember the coefficients in the formula. However, we can use the following
method to derive them. Consider the following diagram for ¢! term:

(=)

Here the circle means a trace operation, and the arrow means A. So the coefficient is —tr A.
For ¢2 term, we have diagram:

G () @

The left two circles mean (—tr A)?, and we have to divide by 2! because of the symmetry of the
two identical circles. The right circle means —tr A2, but this is a cyclic group of order 2, so we
have to divide by 2. Therefore, the total term for ¢ is:

(—trA)2 trAz_(trA)2 tr A2
2! 2 2 2

For > term, we have diagram:

T @ (O @ ) @

The left three circles mean (—tr A)3, and we have to divide by 3! because of the symmetry of the

three identical circles. The second diagram means (—tr A)(—tr A?), and we have to divide by 2

because of the cyclic group of order 2 on the bigger circle. The last diagram means —tr A3, and

this is a cyclic group of order 3, so we have to divide by 3. Therefore, the total term for 73 is:
(—trA)? N (—trA)(—trA?) trA>  (trA)®  (trA)(trA?) trA’

3! 2 3_3!+2 3
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“Babies have to survive, so they have the
strong desire to learn stuffs. You think you
are not good at math because you don’t
have the strong desire to learn math.”

GUOWU MENG

Diagonal Forms

Before, we have studied the canonical matrix representation of linear maps between two different
dimension vector spaces. It is natural to ask what is the canonical form of linear maps from a vector
space to itself, i.e. endomorphisms. Consider the following diagram:

-l [-1s

Fr— A
As both the domain and codomain are the same vector space, both basis B are the same. So the
matrix representation of 7' is much more restricted. The A is simplest looking matrix repsentation
of T, but what does it look like?
Generically, we have the following form:

A
A

2|
I
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where empty places are filled with zeros. It is called the diagonal matrix. Here A; are the
eigenvalues of T. If such form exists, we say that T is completely reducible, or normally say that T
is diagonalisable. If T is not completely reducible, then we have to consider more complicated
forms, which will be discussed later.

Then we have the diagram:

Here P is the change of basis matrix from the basis that gives A to the basis that gives D. Then we
have:

A=PDP!

We have A ~ D, i.e. A is similar to D.
Then we have two questions:

1. How do we know whether T is completely reducible?
2. If T is completely reducible, how can we find P and D?

)'lln 1
Assume that D = . , where A; € F are distinct eigenvalues and I, are identity
Ay,
matrices of order n;, n; > 0 and Zf;l n; = n. For example, we have:

oS = O
N OO

where Ay =1, A, =2,n; =2and n, = 1.
Then we have the decomposition of V:

V:VM @VAZEB---EBVM

where V; = Ker(T — A;1y) are the eigenspaces of T corresponding to eigenvalues A;. Moreover, we
have the decomposition of F":

F" = Span(ey,---,en,) ®Span(en,+1, - sen+ny) S B SpaAN(€nytepm 1415 »€nytetny)

Note that dim Vj. = n; and Z?:l n; = n.

Then we have the following commutative diagram:
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Ml

Malyy,

T=MA IVM @"'@lklvlk

Al[nl

lkl ny

In other words, if T is completely reducible, then there are distinct numbers A;,--- A4, € F
and a non-trivial decomposition V =V, @--- @V, such that T|Va,- = kilVai for each 1 <i <k, and
T=M lv/11 ®---B Ale,mk- Each non-zero vector v; in V), is an eigenvector of T corresponding to
eigenvalue A;. This answered the first question.

Then how to find the eigenvalues and eigenspaces? We can consider the following linear map:

lilv,li Vi, = Vi, x— Ax

Then we have the following equation:
Tx=Ax <= ALly—T)x=0 <= xcKer(41y —T)

As x is non-zero, then (A;1y — T') is not injective, i.e. not invertible. Therefore, we have:
det (Lily —T)=0

So the eigenvalues A; are exactly the roots of the polynomial det (A 1y — T'), which is called the
characteristic polynomial of T. Note that pr(A) = det (Aly — T) is a polynomial of degree
n =dimV. Similarly, we can define the characteristic polynomial of a matrix A as ps(A) =
det (AL, —A).

For example, consider the following matrix:

A:Ll) ;] M_A:POI 1_32]’ pa(l) = (A —1)(h—2)

The roots of ps(A) are 1 and 2, so the eigenvalues of A are 1 and 2. Then we can find the
eigenspaces:

0 -3 01 1
Va—1 =Nul(1-7—A) = Nul [O _J = Nul [0 0} = Span [O]

1 -3 3
Vi—2 =Nul(2-7—A) = Nul [0 0 } = Span L]

Then we have:

=l J=6 3 3l e
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Remark. To find the null space, we first use row operations to reduce the matrix to its row echelon form.
Then we consider the number of free variables to find the number of basis vectors in the null space. Then
we can let one free variable as 1 and other free variables as 0 to find the value of each pivot variable.
Repeating this process for each free variable, we can find all basis vectors of the null space.

For example, for the first matrix above, we have: 0-14+1-x, =0 = x, = 0. So the null space

is Span Ll)] . For the second matrix above, we have: 1-x; —3-1 =0 = x; = 3. So the null space is

Span [ﬂ

In matrix, we have:
[Ap1 -+ Apy| =AP=PD=[Mp1 - Aupn] < APi=AiD;

Proposition 7.1 The following are equivalent:
1. T is completely reducible.
2. T=X 1‘//11 DD lklvlk for some distinct eigenvalues Ay, - - -, A; and non-trivial decompo-
sitionV =V, @---@V),.
3. V has an eigenvector basis of 7', i.e. there exists a basis of V consisting of eigenvectors of 7'.
4. dimV =Yk dim E)(T) = Y5 dim Vy,» where Ay, -, A are the distinct eigenvalues of T
and V), = E, (T) are the eigenspaces of T'.

Consider the following example:

= Example 7.1 A = [8 (1)} is not completely reducible. The p4 (1) = A2, so the only eigenvalue

is 0. Then we have:

0 —1 1
Vi—o = Nul(0-7—A) = Nul [0 0 } = Span [O]

So there does not exist a eigenvector basis of A, as choosing any two vectors in V) _ will be linearly
dependent. Therefore, A is not completely reducible. "

Proposition 7.2 Ej +---+Ej, is a direct sum.

Proof. We just need to check if x; +--- +x; = 0 with x; € E,, then each x; = 0. We can use
induction on k. For k = 1, we have x; =0 — x; = 0. Assume that the statement holds for k — 1.
Then we have:

X1+t =0
Txi+-+Txp=Ax1++A4x =0

Then we subtract A; times the first equation from the second equation, we have:
(M =A)x1+ -+ (M1 — M) xe—1 =0

Given that 4; are distinct, by the induction hypothesis, we have (A; — A )x; =0 = E;, > x; = 0 for
each 1 <i < k— 1. Then by the first equation, we have x; = 0. This completed the induction. W

Then we know that the sum of eigenspaces is a direct sum, i.e. E,, & --- @ E,, . Then we have:

dimV =Y dim E,(T)
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1 0 4
m Example 7.2 LetA= |0 1 3

00 2
are 1 and 2, where A = 1 has algebraic multiplicity 2 and A = 2 has algebraic multiplicity 1. Then
we can find the eigenspaces:

. Then we have pa(A) = (A —1)%(A —2). The eigenvalues

0 0 —4 0 01 1
E;_1(A)=Nul(1-T—A)=Nul [0 0 —3| =Nul[0 0 0] =Span{ |0], |1

0 0 —1] 000 0

10 —4] 4
Ej—>(A)=Nul(2-T—A)=Nul |0 1 —3| =Span {3

0 0 0 | 1

Then we have dim Ej_; +dim E;_, =2+ 1 =3 =dim V. Therefore, A is completely reducible.
Then we can find the diagonalisation:

-1 -1

1 0 4 1 0 4({(1 0 Of 1 O 4
01 3f=(013((0 1 0f(f0 1 3 =
0 0 2 0 0 1[0 0 2][0 O 1

S W B
S O =
—_— O
S O
S = O
- o O
S W A
S O =
—_— O

Completely reducible matrix representations are “the” simplest forms of endomorphisms. Note
that it is not unique, it is unique up to isomorphism, unless the field is ordered. However, not all
endomorphisms are completely reducible. Then we have another term called semisimple. These
two terms are borrowed from representation theory of lie algebras.

Definition 7.1 — Completely Reducible. We say T is a completely reducible if there exists a
matrix representation of T of the following form:

Allnl

Akl ny

Equivalently, T is completely reducible if V' has a non-trivial decomposition V =V, &--- &V,
with respect to which 7' = A; 1V/11 QD )'lexk for some distinct eigenvalues Ay, - - , A.

Definition 7.2 — Semisimple. We say T is semisimple if T @pF : V @p F — V @p F is com-
pletely reducible, where F is the algebraic closure of F and V ®p F is linear space over F.

Remark. We can take F = R, then IF = C. Algebraic closure means that every polynomial in F[x] has a
root in IF. For example, x2+1 has no root in R, but it has roots =i in C.

Note that — ® F = idp, so if we change it to — ®p F, then we are just changing the field from F to F
without changing the values inside. For example, 1 can be viewed as an element in R or C.

In general, T is not semisimple, but it can be decomposed into a semisimple part and a nilpotent
part. Moreover, this decomposition is unique.

We can consider the End(V) = M,,,,(F) = F"" as a vector space. Then T € F™ is a vector.
Then such the set of containing such 7 forms a dense open subset of End(V) =F "’ The dense open
subset is in the Zariski topology. More precisely, the set of all completely reducible endomorphisms
with distinct eigenvalues forms a dense open subset of End(V). We will study Zariski topology
next section.
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Once we know that completely reducible endomorphisms are dense in End(V), then if we want
to prove some identity, it suffices to prove it for completely reducible endormophisms. One of the
example is the Cayley-Hamilton theorem.

Theorem 7.1 — Cayley-Hamilton Theorem. Let 7 : V — V be an endomorphism of a finite-
dimensional vector space V over . Then T satisfies its own characteristic polynomial, i.e.

pr(A)l—r =0.

Remark. pr(A)=det (Aly —T)=A"+---+(—1)"det (T)A°, where A’ = 1 and T° = 1y.

Proof. As pr(A)|;_r is a polynomial in T, it suffices to verify the theorem on a dense set.

LetT = A, lel b---D llexk be a completely reducible endomorphism with distinct eigenvalues
A1,---, Ak and non-trivial decomposition V =V @ --- @ Vj,. Then we have 1y = 1Vx. DD 1‘%‘
Therefore, we have:

Ay —T = (), —AI)IVM @EB(A _A’k)lvlk
Then the characteristic polynomial is:
. . k
pr(A)=det (Aly —T) = (A —A) ™ 4 - (A = 4) ™V = TT(A — 4)"
i=1
where n; = dim V.. Note that A;1y, —7 =0onV,,,as T|y, = A;1ly, . Therefore, we have:
k
pr(M)—r =[IMlv =T)" =0
i=1
As for any v € V, we can write v = vy + - - + v with v; € Vj, then we have:
(Aily, =T)"(vi) =0 Vi = pr(A)|_r (v)=0
This completed the proof. |

If T is completely reducible, then
n; = dim V)L,-

where n; is the algebraic multiplicity of eigenvalue A; and dim V), is the geometric multiplicity of
eigenvalue A;. In general, we have n; > dim Vj.. Then {A,---, A} is the set of roots of pr(A) and
Vl,- = Ker(?Lilv — T)

Then for any 7, if the set of roots of pr(A) in F is {A;,---, A}, then we can define the
generalised eigenspaces:

V)L,- == Ker(/'L,-lv — T) V1 < i < k

Then we check whether dim V = Y*_ dim V), If it holds, then T is completely reducible. If not,
then T is not. So this characterise completely reducible endomorphisms.
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Zariski Topology

Before studying Zariski topology, we first introduce affine spaces.

Definition 7.3 — Affine Spaces. A set A is called an affine space over a field F if it is a
principal (", 4)-set, i.e. there is a free and transitive action of the additive group (F”,+) on A:

+:AXF'"— A, (PV)—P+V
Each element P € A is called a point in A.

Principal means that the group action is free and transitive. Free means that if g is not the
identity element, then g - x # x for any x in the set. Transitivity means that any two elements x,y in
the set are related by some action of the group, g, such that g-x =y.

For example, consider the SO(2) action on the plane R2. The action is not free and not transitive.
It is not free because rotating a point on the plane by 0 degree (the identity element) keeps the point
unchanged, but rotating it by any other angle will change the point. It is not transitive because
there is no rotation that can map a point to another point with a different distance from the origin.
However, if we consider the orbits of the action, i.e. circles centered at the origin, then the action is
transitive on each orbit and free except for the origin.

Then we introduce what topology is.

Definition 7.4 — Topology. Let X be a set. A topology on X is a collection 7 of subsets of X
such that:

1. 9. X €T

2. the union of any collection of sets in 7 is also in 7;

3. the intersection of any finite number of sets in 7 is also in 7.
The pair (X, 7) is called a fopological space. Each set in 7 is called an open set in X.

We can define closed sets in X as the complements of open sets in X. Then we have the following
equivalent definition of topology.

Definition 7.5 — Topology (Closed Set Version). Let X be a set. A fopology on X is a
collection 7 of subsets of X such that:

1. 9. X €1

2. the intersection of any collection of sets in 7 is also in T;

3. the union of any finite number of sets in 7 is also in 7.
The pair (X, 7) is called a fopological space. Each set in 7 is called an closed set in X.

Then Zariski topology is defined as follows.

Definition 7.6 — Zariski Topology. Let A be an affine space over a field IF. The Zariski topology
on A is defined by taking the closed sets to be the zero loci of sets of polynomials in F[xy,- - -, x,].
More precisely, for any set of polynomials S C Flxj,-- - ,x,], the corresponding closed set is:

V(S)={PeA:f(P)=0 VfeS}={fu=0}

The pair (A, Tz,,) is called a Zariski topological space, where Tz, is the Zariski topology on A.

Then the A € F*' = Aﬁz can be viewed as a point in the affine space Aﬁz over [F. Then the set of
all completely reducible endomorphisms with distinct eigenvalues forms a dense open subset of
End(V) = F" in the Zariski topology. Dense means that its closure is the whole space. Open means
that its complement is a closed set, i.e. the zero locus of some set of polynomials in Flxi,- -+, x,2].
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Ring Theory

Before studying the canonical forms of not completely reducible endormorphisms, we need to
introduce some concepts in ring theory.

Definition 7.7 — Domain. A domain is a non-trivial commutative ring R with unity 1 # Og if
non-zero elements a,b € R satisfy ab # Og.

m Example 7.3 Z is a domain. Given any two non-zero integers a,b € Z, we have ab # 0. "

= Example 7.4 7/ 6 is not a domain. For example, 2,3 € Z/ 6 are non-zero elements, but 2-3 =0
inZ/é6. "

Definition 7.8 — Module. A module over R is an abelian group (M, +) together with a ring
action of R on (M, +).

m Example 7.5 R itself is a module over R with the ring action being the multiplication in R. =

(M, +) that is closed under the ring action of R on M, i.e. for any r € R and n € N, we have

I Definition 7.9 — Submodule. A submodule N of a module M over a ring R is a subgroup of
r-neNn.

| Definition 7.10 — Ideal. An ideal I of a ring R is a submodule of the module R over itself.

» Example 7.6 Consider I over itself. Then the only ideals are {0} and F itself. So the ideal of a
field is trivial. "

= Example 7.7 Consider Z over itself. Then the ideals are all of the form (n) =nZ = {nk : k € Z}
for some n € Z. So the ideals of Z are non-trivial. For example, (2) = {0,+2,+4,--- }. "

Definition 7.11 — Principal Ideal Domain. A principal ideal domain (PID) is a domain R
such that every ideal of R is of the form (a) = aR for some a € R.

» Example 7.8 Z is a principal ideal domain, as every ideal of Z is of the form (n) = nZ for some
ne. ]

= Example 7.9 F[x] is a principal ideal domain, as every ideal of F[x] is of the form (f(x)) =
f(x)F[x] for some f(x) € F[x]. It can be proved using the division algorithm of polynomials. =

generated if M is the span of a finite set of elements in M, i.e., M = (m;,my,--- ,my) for some

Definition 7.12 — Finitely Generated Module. A module M over a ring R is called finitely
my,my,--- ,m; € M. It may not be unique.

Note that we do not use the definition of the finite-dimensional vector space here, as a module
over a ring may not have a basis. There exists something called the torsion module that prevents
the existence of basis. We will discuss it later.

Then we introduce the following theorem which can derive Jordan canonical form.

Theorem 7.2 — Classification Theorem of Finitely Generated Modules over a PID. Let R
be a principal ideal domain and M be a finitely generated module over R. Then M is isomorphic
to a finite direct sum of cyclic modules of the form:

M%Rr@éR/ (a;)) =R ®R/(a1)®---®R/(am)
i=1

with a; € R\ {0} and a;|a; 4 foreach 1 <i<m—1.
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Remark. Note that a|b means that there exists some ¢ € R such that b = ac.

Here R” is the free part of M and @7, R/ (;) is the torsion part of M. The torsion part prevents
the existence of basis of M. If the torsion part is trivial, i.e., m = 0, then M is a free module and has
a basis. Moreover, r is the rank of M and is unique. a; are called the invariant factors of M and are
unique up to multiplication by units in R. This is called the invariant factor decomposition of M.
There is another decomposition called primary decomposition, or elementary divisor decomposition,
or Chinese Remainder decomposition.

Theorem 7.3 — Classification Theorem of Finitely Generated Modules over a PID (Primary
Decomposition). Let R be a principal ideal domain and M be a finitely generated module over
R. Then M is isomorphic to a finite direct sum of cyclic modules of the form:

M zR’@éR/ (i) =R ®R/(p]")®--- DR/ (pir)
i=1

with p; being prime or irreducible elements in R and ¢; € Z" for each 1 <i < m.

Remark. As R is a PID, so every ideal is principal. Therefore, every ideal generated by a prime or
irreducible element is a prime ideal. This is why we call it primary decomposition.

For any ring R, we can decomposite as follows:
R={0}UR*US

where R* is the set of units in R and S is the set of non-units and non-zero elements in R. Then
any u € R is called a unit if there exists some v € R such that uv = vu = 1g. For example, in Z, the
units are 1. In F[x], the units are all non-zero constant polynomials.

Then the set of all prime elements and the set of all irreducible elements in R are subsests of
S. In general, they are not the same. The set of all prime elements is a subset of the set of all
irreducible elements. However, in a principal ideal domain they are the same. Irreducible elements
are those elements that cannot be factored into the product of two non-unit elements, i.e., if x # 0
and x ¢ R*, then whenever x = yz, then y or z must be a unit.
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Jordan Canonical Form

Let V be a finite-dimensional linear space over an algebraically closed field I, e.g. C. Then
[F[x] is a principal ideal domain and x — A; are the prime or irreducible elements in F[x] for each
Ai cl.

Remark. If we take non-zero a € F, then a(x — A;) is also an irreducible element in F[x], as o is a unit
in F[x] and we have (x — 4;) = (a(x — A;)). Therefore, the irreducible elements are only unique up to
multiplication by units. We can just choose monic polynomials as the irreducible elements.

Then for any endomorphism 7 : V — V. It is equivalent to consider V as a module over F[x]
with the ring action defined as:

FiAxV =V, (p(x),v) = p(T)v
= Example 7.10 Let p(x) = 2x>+3x— 1 € F[x] and T € End(V). Then for any v € V, we have
p(T)v=2T*+3Tv—v. n

V is the finite-dimensional linear space over F, so it is a finitely generated module over F[x]
with rank 0. It is the torsion part only. Therefore, by the classification theorem of finitely generated
modules over a PID, we have:

~ Flx Flx Flx
ve=P [ = & P _ BB
et (x—=A)s  (x—A)e (x— Ay )em

Note that 7T is the same as the multiplication by x in the module, i.e., x- : V — V defined as v — xv.

F
Then for each cyclic module (pi])w we have the dimension being ¢;. Therefore, we have the
X— N )7
F
basis on & as:
(x—A)¢

Bi={1,(x—A),(x—A)%-,(x—24)%" '}

Then we consider the following diagram:

Fx] X Fx]
(=i T; (=)
[_}B,' [_]Bz
e; e
F' —— g F

Then what is J,,(A;)? We have:
x-l=x=1-(x—A)+A4"1
So the first column of J,,(4;)is [A; 1 0 --- 0]7. Similarly, we have:
xo(x—=A)=1-(x=2)*+ 4 - (x— 4,)
X (x=2) 9 =1 (x = )9+ A (x =) =2 (x— )4 !

Fx
So the matrix representation of x- on ([/l)" with respect to the basis B; is:
X— A )7
o -
1 A
1

Je,(Ai) = Ai




7.4 Jordan Canonical Form 103

We can switch the order of basis elements in B3; to get the following equivalent representation:

Ai

This is called a Jordan block of size e; with eigenvalue A,;.
Then the matrix representation of 7 on V with respect to the basis B= By UB,U---UB,, is:

Jey (A1)
Jer(A2)






8.1

“The idea of representation is one of the
few great ideas in Mathematics.”

GUOWU MENG

Before studying Euclidean spaces, we first review tensors and then introduce inner products.

Tensor

Let V be a finite-dimensional vector space over a field F. Then we have the following definitions.

Definition 8.1 — k-form. A k-form on V is a multilinear map:

VxVx---xV—>TF
| ——

k times
which is linear in each argument. It is an element in (V*)®k,

More concretely, for 1-form, it is a linear functional on V, i.e. an element in V*. It is also called
covector. For 2-form, it is a bilinear map on V, i.e. an element in V* ® V*. To prove that the set of
all 2-forms on V is isomorphic to V* ® V*, we can consider the following diagram:

MapMt(V x V,F) = Hom(V,V*)
! I
Viev* = Hom(V,F)@V*
Remember that Hom(V;, V> ® V3) = Hom(V,V2) ® Va.

Moreover, we have the following two special types of 2-forms which are the elements inside
the symmetric and exterior powers of V*.

I Definition 8.2 — Symmetric and Skew-symmetric 2-forms. A 2-form @ : V xV — F is
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called symmetric if
o(u,v) = o(v,u)

for all u,v € V. It is an element in S?V*. The 2-form @ is called skew-symmetric, or antisym-
metric, if

o(u,v) =—o(v,u)

for all u,v € V. It is an element in A\2V*.
Then we define the tensor spaces.

Definition 8.3 — Tensor Spaces. Let V be a finite-dimensional vector space over a field .
The tensor space of type (r,s) on 'V is defined as:

TV =VRVR --VRV'eV'®---QV"*

vV
r times § tumes

Elements in 7"*V are called tensors of type (r,s) on V, which is a mixed type if r,s # 0.

If a tensor of type (r,0), then it is called a contravariant tensor or simply a tensor. If a tensor
of type (0,s), then it is called a covariant tensor or simply a form. For T°%V it is defined as F
itself. Any elements in 70V are scalar type tensor on V, or simply scalars.

Then we know that End(V) =V @ V* = TV, Therefore, any endomorphism on V can be
viewed as a tensor of type (1, 1) on V, represented by a; with respect to a basis By = {V|,V,,--- ,Vy}
of V. Here the upper index i represents the contravariant part and the lower index j represents the
covariant part. To know that what ai- means, we can consider the following diagram:

v — T vy

[7]BV [7]8‘/

F" — "

A=[d']p,
Then how to get the matrix representation A = [ai.] B, of T with respect to the basis By ? We have:

dj=A¢;,  d; =& A¢;=0'A¢; = (¢ AZ)).
So we have [a;] = (¥, T¥;). We can have an identification between End(V) and 7'V as follows:
T < Tv; 7

For covariant and contravariant, we have the following table:

Object Transformation Type
Standard Basis Vector (&;) Covariant

Dual Basis Vector (¢') Contravariant
Component of a Vector (V') Contravariant
Component Basis Vector (v;) Covariant

An object is considered as covariant if it transform in the same way as the basis vectors of the
original vector space. If you cannot understand it, make up some examples of scaling the vector
spaces.
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In general, an element 7 € 7"*V can be represented as:
1112 lr — AJ AJ A]Y
i ]v,,®v,2® RV, QMR Q--- @7

Note that the representation depends on the choice of basis By of V, i.e., the following two
represents the same tensor with respect to different bases:

|:tlllz lr:| -~ Fﬂﬁﬁ]
Juzs | g, JijzJsl By
The two representations are related by the base change matrices::

(1,92, W) = (viyv2, - v, A= [a5) € GL(V)

Remark. Tt is actually the right action of GL(V') on the set of all bases of V, By:
By x GL(V) — By, (V,A) VA=V
Then we have the following equation:
V= vid
Vi=via;

For A~! [b’] , we have aibk 5" and bl 8/% Therefore, we have:

sl
vk—vjvbk

Remark. For easier memorisation, we use the calculus operators:

817; _ al; avk b]
v, J’ 8v~

To memorise it, we consider the lower indices in denominators (lower) will flip to the upper indices in
numerators. (As lower twice, so flip to upper)
Then we can use the chain rule to verify the two equations of A and A~!:

8v vk
8v, 8v~

=&

Then we have the transformation rule for the representation of 7 € 7"V under the base change
from By to By:

ﬁ": IN’ = (b”b’2 bf")t"."'?“"'f. (a“alf-~-a'b>
.

Jij2 1 n J1J2 s J1 2 Js

Given that By = {V},---,V,} is a basis of V, then we can define a basis of 7"*V as follows:
Bresy = {V, @V, @+ @¥, @V @02 @@ 1 1 <iyia, -+ ir, j1, jos 5 js <1}
Then for symmetric and skew-symmetric k-forms, we have:

BSkV:{vilviz"'vik -1 §i17i27"' ,ikSn}
By = {Fi AWy A AV 01 <lyyia, - i <}

Then “honest” definition of symmetric basis is:

iV Vi 1 <ip <ip <-+- < ixy <n}
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but it is redundant. We just have to make sure that the representation of any symmetric k-form is
unique for a given basis. For example, in 2-form case with the basis {¢; @ €;}, we originally have
to write:

= Z tijéi ® Ej
I<i<j<n

but this is ugly, so we just write:

t= tijEiEj
with #'/ = ¢/!, If we ignored the condition on ¢/, then we have @/ = —a/' such that:

= tijEiAzj —i—aijEi/\é’j = (lij+aij)EjAZj =0
Asa =all = —dV,

Then for skew-symmetric basis, let say ¢ € BB ,«,,, then we have:
y y Ny

t =TV = ("R AV, A AT,
with Z = (iy,ia,- - - ,ir) being an ordered index set with 1 <ij < i, < --- < i < n. Then for any

permutation o € Sy, to make sure it is unique, we require:

tG(I) T

= Sgn(o)t

where 6(Z) = (ig(1),i5(2)s " slo(k))-
In conclusion, we have to make sure that the representation of any symmetric or skew-symmetric
k-form is unique for a given basis by the following conditions respectively:

Symmetric: 11127 = flo()io@) o)

Skew-symmetric: 12" = Sgn(o)t'e0)o@) otk
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8.2 Inner Product

Let V be a finite-dimensional real linear space. Then we have the following definitions.

Definition 8.4 — Inner Product. An inner product on V is a map (—,—) : V x V — R such that
1. Bilinearity: (—,u) and (u,—) are linear functionals on V for all u € V;
2. Symmetry: (u,v) = (v,u) for all u,v € V;
3. Positive-definiteness: (v,v) > 0 for all v € V with equality if and only if v = 0.

Note that an inner product on V is a positive-definite symmetric 2-form on V.

Definition 8.5 — Pseudo Inner Product. A pseudo inner product on V is a non-degenerate

symmetric bilinear form on V, i.e., an element (—,—) € S?V* such that (—, =)V —=Viis
isomorphic.
Then a real linear space V with an inner product (—, —) is called a Euclidean space, denoted by
(V7 <_7 _>) .

Definition 8.6 — Metric Space. A metric space is a non-empty set X together with a metric
structure, i.e., a distance function d : X x X — R that sends (x,y) to d(x,y) such that

1. Positivity: d(x,y) > 0 for all x,y € X with equality if and only if x = y;

2. Symmetry: d(x,y) = d(y,x) for all x,y € X;

3. Triangle Inequality: d(x,z) < d(x,y)+d(y,z) for all x,y,z € X.

If we want to combine the metric structure with the linear structure on V, we have to make
sure that the distance function d : V x V — R satisfies the two additional properties in order to be
compatible with the linear structure. We would say the properties are harmonic with the linear
structure.

Definition 8.7 — Normed Linear Space. A real normed linear space is a real linear space
V together with a compatible metric structure or a normed structure, i.e., a distance function
d:V xV — R such that

1. Translation Invariance: d(u+w,v+w) = d(u,v) for all u,v,w € V;

2. Homogeneity: d(ou,av) = |ct|d(u,v) for all u,v € V and a € R.
Then we can define the norm on V as ||v|]| = d(v,0) forallve V.

Then a function || — || : V — R that sends v to ||v|| is called a norm on V if it satisfies:

1. Positive-definiteness: ||v|| > 0 for all v € V with equality if and only if v = 0;
2. Homogeneity: ||av| = |al||v|| forall v € V and o € R;
3. Triangle Inequality: ||u+v|| < ||u||+||v|| for all u,v € V.

We can use the norm with the properties above to define the distance function by d(x,y) = ||x —y||.

Theorem 8.1 — Parallelogram Law. The parallelogram law states that the sum of squares of
the lengths of the four sides of a parallelogram equals the sum of squares of the lengths of the
two diagonals, i.e., with the following figure:

we have:

et 9117 - = v]I* = 2> + 2] v}
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Proposition 8.1 An inner product on V is equivalence to a norm structure on V which satisfies the

parallelogram law.

Proof. (=) Let (V,(—,—)) be a Euclidean space. Then we can define the norm on V as ||v|| =

\/(v,v) for all v € V. Then we have:
1. Positive-definiteness: ||v|| =/ (v, v) > 0 for all v € V with equality if and only if v = 0;

2. Homogeneity: ||awv|| = \/{av,av) = \/a2(v,v) = |a|||v|| forall v € V and @ € R;
3. Triangle Inequality: By Cauchy-Schwarz inequality, we have:

u+v|| =V (ut+v,u+v) =/ (w,u) + v,v) + w,v) + (v,u)
= 2+ V]2 4 24,v)
<\l + I+ 2] ]

(Nl +[1vI)> = Tl 4 [1v]

Therefore, the triangle inequality holds.
4. Parallelogram Law: We have:

e+ v|* 4 [Ju—v|* = (u+v,u+v) + (u—v,u—v)
:< ,u)+<v,v>+<u,v>—|—<v,u)+<u,u>+(v,v>—(u,v)—(v,u)

= 2u,u) +2(v,v) = 2ul* +2|v]>
(<) We define the inner product for all u,v € V as follows:
1
(u,v) =5 (Nl +v[I> = flul® = [Iv[1*)
Then we check the three properties of inner product:

1. Bilinearity: For all u,v,w € V, we have to show that (u+w,v) = (u,v) + (w,
equivalent to show that:

v), which is

e+ VI[2 =l w]|> = (V]I = e[ = [l = [Vl + [+ 02 = [lw]] = [Iv]]?

= [utw I+ lul® + (1wl + V1P =l w4 v]? + w+v)?
Then we may consider x=u+wand y=v+w, and X' = u+v+w and y = w, and we have
e+ v+ 2w + [Ju—v||* = 2||u+w||> + 2|y + w]|?
et +v 2w+ a4 v]1> = 2[4 v+ w4+ 2w
Then we have

it = vI1? = lla+v1[> = 2l wl[> + 2]+ w[* = 2lJe v+ w]|* = 2]}

Moreover, by the parallelogram law on u — v, we have
2l +2[Iv ]I = 2l +v]1* = 2l A+ wl|? 4 2]y + ][> = 2|+ v+ wl|? = 2[w]?
2 2 2 2 2 2 2
= [lutv+wll” + ™+ VII7+ Il = [lu+wl”+ [l +wl] "+ [Ju V]
Hence, additivity in the first argument holds. We can show the additivity in the second

argument similarly. For homogeneity, we may consider the following steps:

e Prove natural number homogeneity
e Prove reciprocal of natural number homogeneity
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e Prove Cauchy-Schwarz inequality
e Prove that for any A € R, every r € Q, we have:

A u,v) = Au,v) | = [(A =) (u,v) = (A = r)u,v)| < 2[4 —r[|ul][v]

e Hence, prove real number homogeneity by taking limit on both sides as r — A.
2. Symmetry: For all u,v € V, we have:

,v) = 5 (w12 =l = [Iv1]?)

e\

=5 (v ull® = [V = llulf?) = (v,u)

3. Positive-definiteness: For all v € V, we have:
1 2 2 2 1 2 2 2
(v,V>=§(HV+VH = PI= =l )=§(4HVH 2|y =v[IF=0

Thus, (—,—) is an inner product on V. [ |

Theorem 8.2 — Cauchy-Schwarz Inequality. Let (V,(—,—)) be a Euclidean space. Then for
all u,v € V, we have:

[{w, )| < e[V

with equality if and only if # and v are linearly dependent.

Proof. Let f(t) = |[tu+v|* = {tu+v,tu+v) = ||ul|* +2¢{u,v) +||v||*> > 0 for all t € R. Then
we have f(r) > 0 for all r € R. For u = 0, the inequality holds trivially. For u # 0, the quadratic
function f(r) has at most one real root, so its discriminant is less than or equal to zero:

A= 4uv)? = 4PV <0 = (u,v)* < [lul?|Iv]]®
n

Definition 8.8 If both u,v € V are non-zero vectors in a Euclidean space (V, (—,—)), then the
angle 0 between u and v is defined as:

0 :arccos< {,v) )
(el [V

Moreover, if (u,v) = 0, then we say that u and v are orthogonal.
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Orthogonality

Let V be a Euclidean space with inner product (—,—) and W C V is a subspace of V. Then we
claim that W inherits an Euclidean structure from (—,—) in V. We can simply restrict the inner
product (—,—)onV to W:

WxW e s yxy — b

<7=7>

Note that the restriction (—, —) is still an inner product on W. Also, the positive-definiteness of
(—,—) implies that (—, —) is non-degenerate, i.e., the map (—,—), : W — W* is isomorphism.
Note that W and W* have the same dimension and it has a trivial kernel: (u, —)w = 0 implies
(u,uyw = 0 implies u = 0. Now, suppose w = (w1, -+ ,wy) is a basis of W and w* = (w],--- ,wy)
is the dual basis of W*, then we have the following diagram:

00— Ker(A) % R 0

<W17_>

where A, = : , and s is a section of A,, with image W. Then we have the decomposition:

<Wk7_>
V =Im(s) ® Ker(A,) =W & Ker(A,,)

Note that it is an internal direct sum. Then we define the orthogonal complement of W in V as
follows.

Definition 8.9 — Orthogonal Complement. The orthogonal complement of W in V, denoted
by W, is defined as:

Wt ={veVv|{w =0forallweW}={veV|(vw)=0forall basis w; € W}
Then we have the decomposition:
V=waow"

Then any vector v € V can be uniquely decomposed as v = w +w* with w = projy, (v) € W
and wh = projy,. (v) € Wt. The map projy, : V — W is called the orthogonal projection onto W
along W+. Take a look at the following figure:
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Then we have the following properties of the orthogonal projection:
1. (projy)* = projyy;
2. Im(projy) =W;
3. Ker(projy ) =W+;
4. projy + projy . = idy.
Definition 8.10 — Orthonormal Basis. A basis v is orthogonal if (v;,v;) = 0 for all i # j. An
I orthogonal basis is orthonormal if ||v;|| = 1 for all i.

Then we have the following proposition.

Proposition 8.2 For any Euclidean space V with inner product, there exists an orthonormal basis
of V. Moreover, there exists a linear isometric isomorphism between V and R” with the standard
inner product, the dot product.

Note that (R",-) is up to isomorphism the only Euclidean space with dimension n, where -
denotes the standard dot product.

Moreover, if w = (w1, wy,- -+ ,wy) is an orthonormal basis of W, then
k
projwu = Z(Wiau>wi
i=1
for all u € V. In case w is orthogonal but not orthonormal, then we have:

. k <Wi,l/t>
projyu =
v ,; (wi, wi)

i
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Gram-Schmidt Process
Let w = (w1, w,- -+ ,wy) be an orthonormal basis of W C V. Then we have:
k

(Wi, X)w; +x — Z(wi,x>w,~ = Projyx + projy Lx.
i=1

-

Il
-

X =
4

ew cwit

To show that projy,1.x € W, it suffices to show that (w;, projy,1x) =0 forall 1 < j <k:

k

(wj,projyy.x) = (wj,x =} (wi,x)wi)
i=1

= (wjsx) = ) (wir ) (wj, wi)

N

i=1

= (wj,x) — (wj,x) =0

Note that the key step is to use the bilinearity of the inner product and the orthonormality of w.

Now, given any basis x = (xj,x2,---,x,) of V, we can use the Gram-Schmidt process to
construct an orthonormal basis w = (wy,wy, -+ ,w,) of V by inductive argument. The idea is: We
have V, DV, D --- DV, DV DVy = {0} with the dimension n,n—1,---,2,1,0 respectively.
Then we have w as the orthonormal basis of V;, then we can extend it to w,w, as the orthonormal
basis of V;, and so on and so forth until we reach V,, = V.

Then we consider the first two cases to illustrate the idea. Let vi = u;. Then we have w; = HE—:H
as the orthonormal basis of V; = Span{u; }. Then we want to find the wy such that w,w, is the
orthonormal basis of V, = Span{u,u;}. We can consider the following diagram:

Then vy = x; — projy, x2 = x2 — (w1,x2)w; is orthogonal to wi. Note that wy is normalised. Then
we can normalise v, to get wy, = H%H Therefore, w,w; is the orthonormal basis of V,. Then for
general k-th step, we have:

k—1 k—1 <
Vi, Xg) Vi
Vi = X — Z<Wi>xk>wi =Xk — Z Vi, Wip=
i=1 i=1 <ViaVi> Hvk”
given that wy,wy,---,w_; is the orthonormal basis of V;_; = Span{x;,xz,---,x_1} and the
orthogonal basis of Vy_1, vi,vo, -+, vg_1.

Then there is a useful corollary of the Gram-Schmidt process, the QR Decomposition.
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Let V be a Euclidean space. We can interpret it as (R”, ) up to isomorphism. Then we have a

basis (X],X2,- -+ ,X,) of V and we can form an invertible matrix A whose columns are the vectors
)_C‘la)_éZa e 7)_6117 i-e',

A= 1|X] X - X
Then we have an orthogonal basis (v, ,¥,) of V and an orthonormal basis (W, --- ,w,) obtained

by the Gram-Schmidt process. Then we should have an invertible matrix to convert between bases.
Then what is the matrix to convert from the original basis to the orthonormal basis?
Note that each X can be expressed as a linear combination of wy,--- , wy:

k
X = Vi +
1

1 ‘_;l'?xk>—» ||—» H—» _l_lcil(—» —»>—»
——V; = ||V || Wk Wi, Xi)W;
] <v”v1> 4 Pt 3] 4

—~

il

Also, we can express X as follows:

(W1, %)

— <wk—la)_c‘k>

.
fk: V_l;] V_‘;Z o Wy ||‘—}»kH
o BN
- O -
Then we have the matrix equation:
(W1, X1)  (W1,%2) (W1,%n)
_! _! _! _! _! _! 0 <w2af2> (Wz,f,1>
. | . | L

0 0 0 (Wy,Xn)

A 0

R

which is called the QR Decomposition of A, where Q is an orthogonal matrix and R is an upper-
triangular matrix with positive diagonal entries. However, normally we denote the orthogonal
matrix by O instead of Q and an upper-triangular matrix by U instead of R.
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Orthogonal Group and Special Orthogonal Group

Let V be a Euclidean space with inner product (—, —). Then we view V as a linear space, and we
have Aut(V) = GL(V). If we view V as a Euclidean space, then we have Aut(V) = O(V) C GL(V),
where O(V) is the subgroup of GL(V') that respects the Euclidean structure, i.e., for all 7 € O(V),
we have:

(T (u), T (v)) = (u,v)

for all u,v € V, so length and angles are preserved under 7. Or equivalently, the following diagram
commutes:

VxV

VxV R
X =

We can also define the orthogonal group O(n) using this property. Let V = R" with the dot product.
Then for any A € GL,(R), A € O(n) if and only if A satisfies:

(@i,dj) = (A€, A¢)) = (é;,€)) = §;
It is equivalent to say that ATA =1, ie.,AT = A~!. Therefore, we have:

O(n) ={A€GL,(R) |ATA=1,}
Note that det (A7) = det (A)” = det (A). Therefore, we have det (A)?> = 1 for all A € O(n), i.e.,
det (A) = £1.

Then consider the following exact sequence:

| — 5 SL(V) —— GL(V) — %t 4 R* 1

where R* = GL{(R) = R\ {0} is the multiplicative group of non-zero real numbers. As for any
automorphism A € GL(V), we have a determinant det A € R*, which is surjective. SL(V) is defined
as the kernel of the determinant map, i.e., SL(V) = {A € GL(V) | det A = 1}.

Similarly, we have the special orthogonal group SO(V) as the subgroup of O(V') with determi-
nant 1:

SO(V) ={A€O(V)|detA=1}
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Matrix Representation of Inner Products
Let V be a Euclidean space with inner product (—, —). Then we can choose a basis v = (vi,va, -+ ,v,)

of V. Then we have

1

Xl y

,' X2 , y2
x=xvi= | |, y=yvi=|.
xl’l yn

Then the inner product (x,y) can be represented as:

(x,y) =x'y (vi,v;) = x" @y = x- (wy)

where we let @ = [(v;,v;)] be the matrix representation of the inner product with respect to the
basis v. Then (—,—) = -@—. To find the canonical form of the inner product, we left it to the next

chapter.

Proposition 8.3 — Spectral Theorem for Real Symmetric Matrices. Let A be a n X n real
symmetric matrix. Then there exists an orthogonal matrix O and a diagonal matrix D such that:

A=0D0O"!'=0D0"

where the entries of D are the eigenvalues of A. Or equivalently, there exists an orthonormal basis

of R” consisting of eigenvectors of A.

To prove this proposition, we would use the result in Hermitian spaces, so we leave the proof to

the next chapter.






“In Mathematics, one of the great ideas is
anytime you are interested in vector space
over real numbers, but real number is not
as nice as complex numbers. So you should
turn the problem into complex case, then
use the result there to do it in real case.”
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9.1 Hermitian Forms and Unitary Groups

9.1.1 Hermitian Forms

Similar to the definitions in Euclidean spaces, we can define Hermitian forms and Hermitian spaces
as follows.
Definition 9.1 — Hermitian Form. Let V be a complex vector space. A Hermitian form or
Hermitian product on'V is amap (—,—) : V x V — C such that the following properties hold:
1. Sesquilinearity: For all u,v € V and a0 € C, we have:
a. Biadditivity
b. (u,av) = a{u,v)
c. {(au,v) =0ou,v)
2. Conjugate Symmetry: For all u,v € V, we have:

(u,v) = (v,u) = (u,v)"

The dagger symbol T is defined as (u,v)" = (v, u).
3. Positive-Definiteness: For all v € V, we have:

(v,v) >0

When the positive-definiteness property becomes non-degeneracy, i.e., (v,v) = 0 implies v = 0,
then the Hermitian form is called a pseudo Hermitian form.
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‘We can also define the norm of a vector v € V as:

V= v vy)

The other four properties of norm is the same as in Euclidean spaces. Moreover the Cauchy-Schwarz
inequality is as follows:

[(, )| < [V
for all u,v € V, with equality if and only if # and v are linearly dependent.

Proof. Let f(t) = |tu+v||*> = (tu+v,tu+v) = t?||ul|> + 2R ((u,v))t +||v||* > 0 for all t € R. Then
we have f(r) > 0 for all r € R. For u = 0, the inequality holds trivially. For u # 0, the quadratic
function f(r) has at most one real root, so its discriminant is less than or equal to zero:

—~

A=4(R((u,v)))* = 4llul*[V]* <0 = (R((u,v))* < [|ul*[V]* = R (Ge,v))] < [lull [Vl

—

Note that (u,v) = |(u,v)|e® for some 8 € R. Then we have:

—~

(e Ou,v) = e (u,v) = |(u,v)|
Therefore, we have:
[, v)] = [R((e™Cu,v))| < le”Cull|[v]| = [lull]]v]
[ |

The sesquilinear map (—,—) can be defined as a bilinear map V x V — C, where V is the
complex conjugate vector space of V, or linear map V @V — C. The complex conjuage vector space
V is defined as the same set as V with the same addition operation, but the scalar multiplication is
defined as:

CxV—=V, (a,v)—av
Then we have the following examples:

m Example 9.1 We define the standard Hermitian form on C" as:

i@ =a V=10

for all i,V € C". It is straightforward to verify that it satisfies all the properties of Hermitian forms.
For example, the positive-definiteness property holds since:

Then a complex linear space V with an Hermitian form (—, —) is called a Hermitian space.
Also, the model / standard Hermitian space is (C", (—, —)) with the standard Hermitian form, that
is, the inner product defined above.

Let V be a Hermitian space with Hermitian form (—, —). Then we say u,v € V are orthogonal

if (u,v) = 0. Similar to the Euclidean case, we can define orthogonal complement, orthogonal
projection, orthonormal basis, and Gram-Schmidt process in Hermitian spaces. We also have the
decomposition V = W+ @ W for any subspace W C V.

Similarly, there is only one Hermitian space up to isomorphism with dimension 7, that is,
(C",(—,—)) with the standard Hermitian form, i.e., for any Hermitian space V with dimension n,
there exists a linear isometric isomorphism between V and (C", (—,—)).
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Unitary Groups
Similar to the orthogonal groups in Euclidean spaces, we can define unitary groups in Hermitian
spaces as the automorphism groups that respect the Hermitian structure. Then we have

U(n) ={A € GL,(C) |[ATA=1}

where AT =4 is the conjugate transpose of A. Note that det (A¥) = det (A). Therefore, we have
|det (A)|> =1 forall A € U(V), i.e., |det (A)| = 1. This means U(1) = {z € C | |z| = 1} is the unit
circle in the complex plane. Graphically we have:

Im
A

where the unit circle represents U(1) in the complex plane. Also in orthogonal group, the determi-
nant of any orthogonal matrix is either 1 or —1. This is the special case of unitary group when the
entries are real numbers. Also we have the special unitary group SU(n) as the subgroup of U(n)
with determinant 1.

Then we have the following definition similar to orthogonal matrices:

I Definition 9.2 — Unitary Matrix. A matrix A € GL,(C) is called a unitary matrix if ATA = I,
ie, Al =A"

Using similar Gram-Schmidt process in Euclidean spaces, we get the following QR decomposition
in Hermitian spaces:

A=QR

where Q is a unitary matrix and R is an upper-triangular matrix with positive real diagonal entries.
However, normally we denote the unitary matrix by U instead of Q. One reason why others use QR
instead is to distinguish the same notation on unitary and upper-triangular matrices in Hermitian
spaces and orthogonal and upper-triangular matrices in Euclidean spaces.

Matrix representation of Hermitian forms

Then we have the matrix representation of Hermitian forms as follows.

Let V be a Hermitian space with Hermitian form (—,—). Then we can choose a basis v =
(vi,v2,--+,v,) of V. Then we have
® = [(vi,v)]

Note that o is a Hermitian matrix, i.e., ®" = @. Then we claim that if A and A are two matrix
representations of the Hermitian form (—, —) with respect to two different bases v and v respectively,
then there exists an invertible matrix P € GL,,(C) such that:

A=PAP
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where P is the change-of-basis matrix from v to v. Or equivalently,
H.(C) x GL,(C) — H,(C), (A,P) > PTAP

where H,,(C) is the real linear space of Hermitian matrix of order n. The reason why it is real, as it
is not closed under multiplication by complex numbers. Take n = 1, then H; (C) = R, which is not
closed under multiplication by complex numbers.
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Self-Adjoint Operators and Unitary Operators

Let V be a Hermitian space with Hermitian form (—,—). Then we have the following defini-
tions.
Definition 9.3 — Self-Adjoint Operator. A linear operator 7 : V — V is called a self-adjoint
operator or Hermitian operator if:

(Tu,v) = (u,Tv)

for all u,v € V. Or equivalently, T = T, where T is the adjoint operator of T defined as the
unique operator satisfying:

(Tu,v) = (u,TTv)

Definition 9.4 — Unitary Operator. A linear operator U : V — V is called a unitary operator
if:

(Uu,Uv) = (u,v)
for all u,v € V. Or equivalently, UT = U~

Definition 9.5 — Normal Operator. A linear operator N : V — V is called a normal operator
if:
NN =NN'

Proposition 9.1 For T : V — W a linear operator between two Hermitian spaces V and W, there
also exists a unique adjoint operator T : W — V satisfying:

(Tu,w)w = (u,T"w)y

Proof. We can reduce the problem to C" and C™ with standard Hermitian forms by choosing
orthonormal bases of V and W. Then we have T represented by a matrix A € M,,,(C). Then we
propose there is a matrix B € M,,,,(C) such that for all &; € C" and f; € C™, we have:

(A2, f) = (A&)'f; =e[A"f; =& A"
which is the (i, j)-th entry of A*. On the other hand, we have:
(¢, Bfj) =& (Bf;) =&/ B

which is the (i, j)-th entry of B. Therefore, we have B = A", This proves the existence of the adjoint
operator. The uniqueness is straightforward. |

Proposition 9.2 Let T be a self-adjoint operator on a Hermitian space V. Then we have the
following properties:
1. All eigenvalues of T are real numbers.
2. Eigenspaces of T are mutually orthogonal, i.e., if # and v are eigenvectors of T corresponding
to distinct eigenvalues, then (u,v) = 0.
3. V is the direct sum of the eigenspaces of 7.
So T is completely reducible.

Proof. Given that TT = T, we have:



124 Chapter 9. Hermitian Spaces

1. Let A # 0 be an eigenvalue of T, so there exists a non-zero eigenvector v such that 7v = Av.
Then we have:

(Tv,v) = (0, TTV) = (v, Tv)

which implies that:

A{v,v) = Ay, v)

Since v # 0, we have (v,v) > 0. Therefore, we have A = 2, i.e., A is a real number.
2. Let A; and A, be two distinct eigenvalues of T with corresponding eigenvectors vy and v;.
Then we have:

<TV1,V2> = <V1,TTV2>
which implies that:
(v, v) = A2 (vi,v2)

Since A; # Az, we have (vi,vz) =0.

3. We know that Vy (T)®---® V), (T) CV, where the spectrum of 7, 6(T') = {A1,42,--- , A}
To show the equality, we let W =V, (T) @ --- ® V), (T') and consider the orthogonal comple-
ment W=, Since T is self-adjoint, we have W+ is T-invariant, i.e., for all w- € W, we have
Tw' € Wt. As for all w € W and w- € W, we have:

(Twh,w) = (wh, TTw) = (wh, Tw) =0

where Tw € W since W is T-invariant. Then we claim that W = {0}. If not, then we have an
eigenvector w € W+ with eigenvalue A4, such that there exists a map T: Wt — W defined
by T(wh) = T(wb). Then Twt = Aw' and Twt = Tw by definition. So we know that A
is an eigenvalue of T, i.e., A € 6(T). Say A = A;. Then we have w' € V, (T) C W, which
contradicts the assumption that wt € W-. Therefore, we have W = {0}, which implies
that V =W.

[

Proposition 9.3 Let T be a unitary operator on a Hermitian space V. Then we have the following
properties:
1. All eigenvalues of T" are complex numbers with absolute value 1.
2. Eigenspaces of T are mutually orthogonal, i.e., if u and v are eigenvectors of T corresponding
to distinct eigenvalues, then (u,v) = 0.
3. V is the direct sum of the eigenspaces of 7.
So T is completely reducible.

Proof. Given that T'T =TT" = 1y, we have:
1. Let A # 0 be an eigenvalue of T, so there exists a non-zero eigenvector v such that 7v = Av.
Then we have:

(Tv,v) = (n,T™V)

which implies that:

Ay =1 () = (A-A—1){nv)=0

Since v # 0, we have (v,v) > 0. Therefore, we have A - A = |A|> = 1,i.e., |A| = 1.
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2. Let A; and A, be two distinct eigenvalues of T with corresponding eigenvectors v; and v;.
Then we have:

(Tvy,v) = (v1, TTV2>

which implies that:

- 1 P
11<V1,V2>:A,2 (Vl,V2> =4 (112,2—1)<V1,V2>:0

Since A; # Ay, we have (v, v;) = 0.

3. We know that V, (T) @---® V), (T) C V, where the spectrum of T, 6(T) = {A1, A2, -+ , At}
To show the equality, we let W =V, (T) @ ---@®Vj, (T) and consider the orthogonal com-
plement W+. Since 7 is unitary, we have W+ is T-invariant, i.e., for all w™ € W+, we have
Twt e WE. As forall w € W and wt € W', we have w’ = Tw € W and:

(Twh W) = (Twh, Tw) = (wh,w) =0

where the second equality holds since T is unitary. Then we claim that W+ = {0}. If
not, then we have an eigenvector w- € W+ with eigenvalue A, such that there exists a
map T : W — W defined by T (w') = T(w"). Then Tw' = Aw' and Tw' = Tw' by
definition. So we know that A is an eigenvalue of T, i.e., A € 6(T). Say A = 4;. Then we
have wt € Vi (T) € W, which contradicts the assumption that wt € WL, Therefore, we
have W+ = {0}, which implies that V = W.

|
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Spectral Theorem

The canonical matrix representation of self-adjoint operator is a real diagonal matrix, and the
canonical matrix representation of unitary operator is a diagonal matrix with entries on the unit
circle in the complex plane. This is stated in the following spectral theorem.

Theorem 9.1 — Spectral Theorem. A Hermitian or unitary operator 7 on a Hermitian space V
is “diagonalisable” by a unitary matrix in the following sense: Choose an orthonormal basis of
V such that T is represented by a Hermitian matrix A. Then there is a unitary matrix U and a
diagonal matrix D such that:

A=UDU ' =UDU"

Note that the diagonal entries of D are all real numbers if 7' is Hermitian, and the diagonal entries
of D are all complex numbers with modulus 1 if 7" is unitary. Moreover, D is the cononical form of
T, i.e., there exists a set of distinct complex eigenvalues {A4;,4,,---, A} and a set of non-trivial
complex linear subspaces {V),,V,,,---,V), } such that:

V= VM @VA2 @'“@VM
with respect to which 7" has the decomposition:
T = ll 1V’11 + 2‘21‘/@ —+ - +lk1vkk

If U is a unitary matrix, then the columns of U form an orthonormal basis of C*. Moreover,
the columns of U are eigenvectors of A corresponding to the eigenvalues on the diagonal of D. As
C" =@, E),(A), where 4; are the eigenvalues of A, we have found an orthonormal basis consisting
of eigenvectors of A.

If V is a complex linear space, then V is a real linear space with dimension doubled and we
write Vi for the underlying real linear space of V. Then we losed some information from V to
Vr. Then we add an extra structure J : Vg — Vg defined by J(v) = iv for all v € V. Then we
have J2 = —1y,. Such a structure is called an complex structure on Vg. Moreover, we have the
following commutative diagram:

complex scalar mult.
CxV ——V
1xid real scalar mult.
R x 1%

For example, we can write (a+ bi)v = av+bJ (v) for all a+bi € C and v € V. Note that
as (det 7)> = (—1)9m&V we have dimgV is even. The dimension doubled as we consider
v=(vi,v2, - ,v) EVasvg = (vi,va, v, IV1, T V2, , T vn) € V.

Then we can do the reverse process. Let W be a real linear space. The complexification of W,
denoted by W, is defined to be the following complex linear space:

WorC
Then we have the following natural identification:

WCWerC=W
wHwRgl

Then W is a real linear subspace of W¢. Note that dim ¢Wg = dim gW.
There are two corollories of the spectral theorem as follows.
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Corollary 9.1 If A is a real symmetric matrix, then A can be diagonalised by an orthogonal
matrix, i.e., there is an orthogonal matrix O and a diagonal matrix D such that:

A=0DO™' =0DO"

Proof. As real symmetric matrices are Hermitian matrices, by the spectral theorem for Hermitian
matrices, we know that any real symmetric matrix can be diagonalised by a unitary matrix, i.e.,
A = U'DU for some unitary matrix U and real diagonal matrix D. Note that the entries of U
are complex numbers in general. Then we should try to find an orthogonal matrix O such that
A = 0T DO. Note that for any real eigenvalue A of A, the system (A — A1)V = 0 has real coefficients.
Then if V = X+ iy is a complex solution, then we have:

(A= ADV = (A—ADF+i(A—AD)F=0

which implies that both X and y are real solutions. Therefore, we can always find a real eigenvector
corresponding to each real eigenvalue of A. Then we can choose an orthonormal basis of R"
consisting of real eigenvectors of A by Gram-Schmidt process. Let O be the matrix whose columns
are the orthonormal basis of real eigenvectors. Then we have O is an orthogonal matrix and
A = 0" DO. Therefore, we conclude that any real symmetric matrix A can be diagonalised by an
orthogonal matrix. |

Corollary 9.2 The canonical form of a orthogonal matrix O of order 7 is of the following form:

_Requ -
Re,
Ro,
L Iy
where Rg. = Qusléy —uiiley is the rotation matrix of angle 6;,, p =1ifnisoddand p =0if n
%~ lsing cos6 ge v, P = pP=
is even, with n = 2k+ p, and J, is I if det O = 1 and [_01 (1)] if det O = —1.

Corollary 9.3 The matrix representation H of the Hermitian form on a complex vector space V
with respect to a basis v is a Hermitian matrix. Moreover, there exists a unitary matrix U and a
real diagonal matrix D such that:

H=UDU"
Then the Hermitian form can be represented as:
(x,y) =x"Hy =x"UDUy = (U'x)D(Uy)
Moreover, D can be expressed as:

)
D=| —u
0
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A H
where A = and u = with A;, ; > 0 for all 7, j. The pair (7,s) is

Ar M
called the signature of the Hermitian form. We may further decompose the Hermitian form as:

VA A VA

D= —VE —I ~VE | =ULU"
0 0 0

ven Vi
where VA = and /U = .
Vi VI

So the Hermitian form can be represented as:

(x,y) = (U"Ux)'L4(U"TUTy)

In summary,

¢ Any Hermitian form on a complex vector space can be represented by a Hermitian matrix.

e The canonical representation of Hermitian form is /,.; up to a unitary change of basis. If the
Hermitian form is positive-definite, then the canonical representation is ,,.

e Any symmetric 2-form @ on a real vector space can be represented by a real symmetric

matrix. }
I,
e The canonical representation of symmetric 2-form is —I up to an orthogonal
0
change of basis. If the symmetric 2-form is positive-definite, then the canonical representation
is I,. i
. . . .
e The canonical representation of pseudo inner product is | ;| up to an orthogonal
—iq]
change of basis, with n = p+¢q. Then we call (p,q) the signature of the pseudo inner
product.
e V is areal vector space of dimension n. Then up to isomorphism, there are n + 1 different
pseudo inner products on V, corresponding to the signatures (n,0),(n—1,1),---,(1,n—

1),(0,n).
e Any pseudo inner product V is isomorphic to (R",1,,) = RP9. As it sends (x,y) — x1y1 +

ce —i—xpyp —Xp+1Yp4+1 = — XnYn-
The set of inner products on a real vector space V of dimension 7 is isomorphic to the orbit

space of the right action of group O(n) on GL,(R) GL,(R)/O(n), where O(n) is the orthogonal
group of order n.

GLu(R) x O(n) = GLu(R), (X,g) X g

As GL,(R) and O(n) have the same homotopy type, the orbit space GL,(R)/O(n) is trivially
contractible. We may consider the following example:

GL(R)=R* O(1)={-1,1}
Then we have:
GL1(R)/O(1) 2R+

Similarly, the set of Hermitian forms on a complex vector space V of dimension 7 is isomorphic
to the orbit space GL,(C)/U(n), where U(n) is the unitary group of order n. Again, it is contractible.
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We have a simple introduction to the Lorentz inner product on R*. It sends (x,y) € R* x R* to

X-y = xpyo— Xy, where x = [);ﬂ andy = [);?}
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10.1 Symplectic Forms

Let (V,(—,—)) be a Hermitian space. Then we have:

R
3
o R
where g(—, —) is the real part of the Hermitian product and @ is the imaginary part of the Hermitian

product. Both of them are 2-forms on Vr. @ is called a symplectic formon V.

Definition 10.1 — Symplectic form. A symplectic form on a real vector space V is a non-
degenerate, skew-symmetric 2-form @ : V xV — R.

A symplectic vector space is a pair (V, ®).
We have J € End(VRr) defined as the scalar multiplication by i on Vg, such that J 2 _ ly.
Note that we have three structures on Vi:
o Complex structure: 7 : Vg — Vg with 72 = —1y,;
e Symplectic structure: o : Vg X Vg — R is a non-degenerate, skew-symmetric bilinear form;
¢ Riemannian structure: g : Vg x Vg — R is a positive-definite, symmetric bilinear form.
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Then we have the following equation:

(x,y) = g(x,y) +io(x,y)
for all x,y € Vg. Moreover, we have:

(ix,y) = —i(x,y) = g(Tx,y) +io(Tx,y) = o(x,y) —ig(x,y)
for all x,y € Vr. This implies that:

o(x,y) = g(Jxy), gxy)=—-0(xTy)
Consider the following equation:

(ix,iy) = (x,y) = g(Tx, Ty) +io(Tx,Ty) = g(x,y) +io(x,y)
for all x,y € Vg. This implies that:

8(Jx,Ty) =gxy), o(Jx,Jy) = 0x,)y)

for all x,y € Vg. Or equivalently, we have J*g = g and J* 0 = .
Note that the Hermitian product is positive-definite, so we have

(x,x) >0 = g(x,x) >0,0(x,x) =0

for all x € Vg \ {0}. If x = 0, then we have (0,0) =0, g(0,0) =0 and ®(0,0) = 0. Also, we have

<y7x> = <x7y> = g(y,x) —l(l)(y,x) = g(x7y> —I—lﬂ)(x,y)
for all x,y € Vr. This implies that:
gxy) =glx), xy)=-0(yx)

for all x,y € VR, i.e., g is symmetric and @ is skew-symmetric.
As o(x,y) = g(Jx,y) for all x,y € Vg, so ® is non-degenerate if g is non-degenerate. Then we
have the following commutative diagram:

Vr

VR

As 0y (x) = g, (Jx) for all x € Vg.
Then we can recover a Hermitian space from a real vector space with these structures. Let V be
a real vector space. If any two of the above three structures are given and compatible, the third will
be determined. Moreover, we have a Hermitian product on V on the complex linear space (V,7)
where iv=JvforallveV.
The meaning of being compatible pair:
e (g,J) are compatible if 7*g =g, i.e., J € Aut(W,g) = O(W,g); Then we can define
o(x,y) = g(Jx,y) and (—,—) = g+ i®w. We can check that @ is skew-symmetric and
non-degenerate, and (—, —) is a Hermitian product:

o(y,x) = g(Jy,x) = g(T Ty, Tx) = g(—y,Tx) = —g(Tx,y) = —0(x,y)
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Also, if ®(x,y) =0 for all y € V, then we have g(Jx,y) = 0 for all y € V, which implies
that 7x = 0 as g is non-degenerate, i.e., x = 0. Therefore, @ is non-degenerate. As for the
Hermitian product, the sesquilinearity is shown as follows:

(ix,y) = g(Tx,y) +io(Tx,y) = @(x,y) —ig(x,y) = —i(g(x,y) +io(x,y)) = —i(x,y)

For the conjugate symmetry, we have:

(y,%) = g(v,x) +iw(y,x) = g(x,y) —io(x,y) = (x,y)
for all x,y € V. Also, we have:
(x,3) = g(x,x) +i(x,x) = g(x,x) >0

¢ (w,J) are compatible if 7*0 = o, i.e., J € Aut(W,w) = Sp(W,w) and —w(Jx,x) >0
and equality holds if and only if x = 0. Then we can define g(x,y) = —o(x,Jy) and
(—,—) = g+im. We can check that g is symmetric and positive-definite, and (—, —) is a
Hermitian product:

g x) = —0(y,Jx) = —0(Jy, T Jx) = —0(Jy,—x) = —0(x,Jy) = g(x,y)

Also, as —®(Jx,x) > 0 for all x € V and equality holds if and only if x = 0, we have
g(x,x) >0 for all x € V and equality holds if and only if x = 0. Therefore, g is positive-
definite. For the Hermitian product, we may use the similar proof as above.

e (g,) are compatible if @(x,y) = g(Ax,y) for some A € End(V). If A> = —1, then J = A.
In general, A is skew-symmetric, i.e., g(Ax,y) = g(x, —Ay), as ® is skew-symmetric. Since
AAT is symmetric and positive-definite, we can define 7 = VAAT 71A, which satisfies that
J?*=—1, as J commutes with A and \/E Then we have A = \/AWJ and let P = \/AT
Therefore, we have:

o(Tx,Ty)=gATx,Ty) =g(PT Tx,Ty) = —g(Px,Ty) = g(T Px,y) = g(Ax,y) = @(x,y).
Also, we have:
—0(Jx,x) = —g(ATx,x) = —g(PT T x,x) = g(Px,x) >0

for all x,y € V and x # 0. Then we can define (—, —) = g+ i®. We can check that (—, —) is
a Hermitian product by the similar proof as above.
Let V be a vector space over F where char(F) # 2. We define the double D(V) =V & V*. Then
we have a natural symplectic form on D(V') defined as:

o((u, @), (v, B)) = ot(v) — B (u)

Also D(V) is called the canonical symplectic vector space associated to V. Then when we
choose a basis {€},¢>,---,€,} of V and the dual basis {é',é,---,é"} of V*, we have the matrix
representation of @ on D(V) as:

(D(E[‘,Ej) Q)(E,’,éj) N 0 In
o(é,é) w(@ e |-, 0

Also the basis {é1,--- ,&,,é',---,&"} is called a symplectic basis of D(V).
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Matrix Representation and Canonical Form

We may revise all the canonical forms we have learned before as follows.

Linear Maps
Consider a linear map T : V| — V; between two vector spaces V| and V; of dimensions n and m

respectively. Then we have:

oA

F* fﬂF’"

where A and A’ are the matrix representations of 7' with respect to different bases of V; and V, and
P € GL,(F) and Q € GL,,(F) are the change-of-basis matrices. P represents the column operations
on A and Q represents the row operations on A. Then we have:

AP=0A", A=A P!

Then we have the left group action of GL,,(F) x GL,(F) on the set of m x n matrices M, (FF)
defined as:

(Q,P)-A=QAP™!
The canonical form of A under this group action is:
oo
0 0
Linear Endomorphisms

Consider a linear endomorphism 7 : V — V on a vector space V of dimension n. Then we have:

Fr — A

F”ﬁlﬁ'”

where A and A’ are the matrix representations of 7' with respect to different bases of V and
P € GL,(IF) is the change-of-basis matrix. Then we have:

AP=PA', A=PAP!
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Then we have the left group action of GL,(F) on the set of n x n matrices M,,,(F) defined as:
P-A=PAP™!

The actual canonical form of A is complicated (Rational Canonical Form), but in generic case,
they are diagonal matrix.

2-Forms

Consider a 2-form @ : V x V — [F on a vector space V of dimension n. Then we have:

VxV — @ L F

o -

F" x F"

Then [®], = [@(v;,v;)] is the matrix representation of @ with respect to the basis v = {v{,v2,- -+ ,v,}
of V. If we change the basis of V to u, then there is a unique invertible matrix, P € GL,(F), such
that u; = ¥, v;P; for all j. Then we have:

(0] = [o(ui,u;)] = [w(zk:vkl’,-",zl:vaj’-)]
=} Pro(vi,v)P]]
k,l

=} (P")o(ve, v1)P]]

k,l
= PT [(O(Vk, Vl)]P

So we have the right group action of GL, () on the set of n X n matrices M,,,,(IF) defined as:
A-P=PTAP

We may check that (A-P;)-P, =A- (P P,) for all A € M,,,(F) and P}, P, € GL,(F).

Note that the right action leaves the symmetric and skew-symmetric properties invariant,
ie., if AT = A (or AT = —A), then we have (PTAP)" = PTAP (or (PTAP)T = —PTAP) for all
P € GL,(FF). For symmetric 2-forms, as (PTAP)T = PTAT(PT)T = PTATP, where AT = A, so we
have (PTAP)T = PTAP. For skew-symmetric 2-forms, as (PTAP)T = PTAT(PT)T = PT(-A)P,
where AT = —A, so we have (PTAP)T = —PTAP.

When F = R, then the w being symmetric or skew-symmetric corresponds to the matrix
representation being real symmetric or real skew-symmetric respectively. If @ is symmetric, then
the representation A is a Hermitian matrix, and we have A = ODOT for some orthogonal matrix O
and diagonal matrix D. Then the canonical form of symmetric 2-form is:

I,
_ IS
0

where r+s <nand r+ s+t = n. If o is skew-symmetric, then the iA is a Hermitian matrix, and
we have iA = UDU' for some unitary matrix U and real diagonal matrix D. Then the canonical
form of skew-symmetric 2-form is:

Jr

Jr
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where J; = [(1) Ol] and the canonical form can be represented by Jo, & Jo & --- B Jo & 0. Note that

J2=—D.
The canonical form of a pseudo inner product on a real linear space of dimension n is I, ; =
I L . L
{ 5 01 ] where p 4+ g = n. The basis inside the canonical representation is called pseudo-
—iq
orthonormal basis.

A pseudo Euclidean space is isomorphic to R”¢ := (R", (¥,) — X1, ;¥). In case the dimension
of V is n, then up to isomorphism, there are n+ 1 pseudo Euclidean structures on V, namely,
RO,anl,n—lj_” 7Rn’0. Note that (Vl',Vj) = 3[1' forl1 <i,j<p, (V,‘,Vj) = —5,']' forp+1<i,j<n
and (v;,v;) = 0 otherwise.

Up to isomorphism, there is only one real symplectic vector space of dimension 2n, i.e.,
D(R") := R" @ (R")* with the canonical symplectic form. The representation of the symplectic
form is

0 1
o
with respect to the symplectic basis: (xq,---,x,,x',---,x"), where {x1,---,x,} is the standard basis
of R" and {x!,--- ,x"} is the dual basis of (R")*. Also, ®(x;,x;) = @(x',x/) = 0 and ®(x;,x/) =
Bl-j = —o(x/,x;) forall i, j.
Note that we have AT = —A where A is the representation of a symplectic form. As det A7 =
det A = (—1)"det A, we know that n has to be even. Moreover, if we consider the a non-degenerate

skew-symmetric 2-form on a real vector space of dimension 2#, then its canonical form is:

J

Jo |

1]

where J, = 1 0

. Note that this is similar to the canonical form of symplectic forms mentioned

above.
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11.1.1

When you studying higher maths, whether
algebra, geometry or anything, you realised
that the hard part is the language. It takes
time. People are impatient. If you are
impatient, you cannot learn mathematics.
But if you are patient enough, you learn the
language, you understand the basic facts.
No tricks, tricks are useless. And then
towards the end, you enjoy the fruit, that
means, everything become so easy. Just do
a simple calculation. You can get many
result. The center of mathematics is always
like that.

GUOWU MENG

Polar Decomposition and Singular Value Decomposition

Polar Decomposition
If 7 # 0, then z = pe'® for a unique p > 0 and ¢/® being a complex number of modulus 1. This is
called the polar decomposition of z. Then we have the following isomorphism:

GLi(C) =U(1)-H7%(C), [z — [¢®]-[p]

where H79(C) is the set of positive Hermitian 1 x 1 matrices, i.., positive real numbers, and U(1)
is the set of complex numbers of modulus 1.
Then we may generalise this to matrices, i.e.,

GL,(C) = U(n)-H°(C), [A]+ [U]-[P]

where H>0(C) is the set of positive Hermitian n x n matrices and U(n) is the unitary group of order
n. Then we claim that any invertible matrix A can be uniquely decomposed as A = PU for some
P € H;%(C)and U € U(n), and we call this the polar decomposition of A.
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Proof. Assume the existance, if A = UP then A" = PUT. Then we have:
ATA=PU'UP = P?

As A is invertible, so is ATA. Therefore, P = VATA is a positive Hermitian matrix. Then we have
U =AP!. Also, we have:

(A*A)f =A'A = PP =P* = Pi=p
and
TTATAZ = (A7)T(AZ) >0 = ||PZ]| >0

for all 7 and equal to 0 if and only if 7= 0 as A € GL,(C). Therefore, P and ATA are positive
Hermitian. Then we know that ATA = U’'DU’" where U’ € U(n) and D is a diagonal matrix with
positive real numbers on the diagonal. Then we have P = U’\/DU'T. Also, we have:

P*=U'VDU"U'VDU" =U'DU"" = A"A
Then we have:
U'u=pP'ATAP ' =P PP =],
Therefore, U € U(n). [
If it is real number, then we have the similar polar decomposition:
GL,(R) = O(n)-S;°(R), [A] = [O]-[S]

where S”0(R) is the set of positive symmetric 7 x n matrices and O(n) is the orthogonal group of
order n.

Singlular Value Decomposition

The corollary of polar decomposition is the singular value decomposition.
We consider the following commutative diagram:

Nul(A) Col(A)
cr A cm
(Nul(A))* & Nul(A) 4 Col(A) @ (Col(A))*
CreCh CroCm
Cn A, Cm

Span{gla'” 7Er}@span{a+lu”' 7En} Span{gh”' ’gr}@span{gr-i-lv"' 7é‘m}
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where A’ = E 8] with A € GL,(C). Moreover, the direct sum in (Nul(A))* @ Nul(A) and

Col(A) @ (Col(A))* are orthogonal direct sums; the direct sum in C" & C" " and C" @ C™~" are ex-
ternal direct sums; the direct sum in Span{é,--- ,é,} ®Span{é,,1,--- ,€,} and Span{éy,--- ,&,} ®
Span{é,.1,- - ,é,} are internal direct sums. Note that all the isomorphisms in the diagram are of
Hermitian spaces. Then we may simplify the diagram as follows:

cn—24 cm
Uy U
cr A om

As A € GL,(C), we have the polar decomposition A = UsP for some P € H>°(C) and Uz € U(r).
Moreover, we may further decompose P as P = UsD,, UI for some Uy € U(r) and D, being a
diagonal matrix with positive real numbers on the diagonal. Then we have:

A O
=8

UsUsD UL 0
U
0 0]

- ) G e

Then we have the singular value decomposition of A:

A:UJ[

A=UxV’

4+ |UsUs O Dy O o+ |lUs O
whereU—Uz[ 0 Imr:|’ Z—[O ol V=U, AL

Theorem 11.1 — Singular Value Decomposition. For any A € M,,,,(C), there exist unitary
matrices U € U(m), V € U(n) and a set of positive numbers {A;,---,A,} such that:

A
A
A=UxV', ¥=
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11.2 Simultaneous Diagonalisation Theorem

Theorem 11.2 — Simultaneous Diagonalisation Theorem. Suppose that Ay, --- ,A; are mutu-
ally commuting Hermitian matrices of order n, i.e., A; € H,(C) and [A;,A;] :==A;A; —A;A; =0
for all 1 <i,j <k, where [A;,A}] is called the commutator of A; and Aj. Then there is a set
of distinct vectors fa € R¥ for & = 1,2,---,1 and an orthogonal decomposition of C" into
non-trivial subspaces:

l
C"'=PE;
o=1

such that for all Z € E;- and A;Z = Ay (i)Z for all 1 <i < k. In particular, there is a unitary matrix
U € U(n) such that:

dy (i)
A;=UDU', D;= € Mysn(R)

forall 1 <i <k and d;(i) are distinct.

Proof. We may induct on k or prove the case k = 2. For k =2, as A|,A, are Hermitian, we
have AjA; = A»A;. Then we have A; acts on C" = E; (A1) ®Ey, (A1) @ --- @ Ey, (A1) where
A, A, - -+, A are the distinct eigenvalues of A;. Then we also consider A, acts on C". We have
the following claim: The action of A, on C” leaves each eigenspace of A; invariant. For any
Z€ E)(Ar), we have:

A1(A2Z) = A2(A12) = A2 (AZ) = Xi(AZ)

Hence, A»7Z € E), (A1
on Ej,(Ay). For any

). Then, we have Ay = Al ® A3 ® - © AL. We claim that each A} is Hermitian
X,y € Ej,(Ar), we have:
(¥,455) = (¥,425) = (A2X,5) = (451, 5)

So, A} is diagonalisable on E 4,(A1) with an orthonormal eigenbasis and distinct eigenvalues u;.
Therefore, we have:

E; (A1) = @D Ep, (A1, A2).
j

Then we have:

(Cn = @Eb.ﬂj (A17A2)‘

ij
We may also write A;, 11; as a vector in R?, i.e., A;; = (Ai, 1)) [

We can use the simultaneous diagonalisation theorem to prove the spectral theorem for normal
operators.

Theorem 11.3 A complex square matrix can be diagonalised by a unitary matrix if and only if it
is normal.
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Proof. (=) Assume that A can be diagonalised by a unitary matrix, i.e., there is a unitary matrix U
such that A = UDU where D is a diagonal matrix. Then we have:

AT =UD'U"
where D is also a diagonal matrix. Then we have:

AA" =UDU'UD'U" =UDD'U" =UD'DU" = A"A
DD' = DD as we have the following equality:

dy d |d|?

dn dn |dn |2

Therefore, A is normal.
(<=) Assume that A is normal, i.e., AA" = ATA. Then we write A = B+ iC where B = A‘L—ZAT and

C= AE—IAT. Then we claim that [B,C] = 0 if and only if A is normal. We have:

AA" = (B+iC)(B—iC) = B>+ C*—i[B,(C]
ATA = (B—iC)(B+iC) = B> +C* +i[B,C]

Therefore, AAT = ATA if and only if [B,C] = 0. Also, we may check that B and C are Hermitian:

g (ATAN _ATeA o (A-AT _AToa
S\ 2 B - S\ 26 =2

Then, by the simultaneous diagonalisation theorem, there is a unitary matrix U such that:
B=UDgU', C=UDU"

where Dp and D¢ are diagonal matrices. Therefore, we have:
A=B+iC=UDgU" +iUDcU" =U(Dg+iDc)UT = UDU

where Dy = Dp + iDc¢ is also a diagonal matrix. Hence, A can be diagonalised by a unitary
matrix. u
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The following chapters are not in the exam syllabus, but for your reference.

Affine Spaces

A line or a plane can be regarded as an affine space. An affine space differs from a vector space in
that it does not have a distinguished origin. We may say that 7oA is the tangent space of an affine
space A at a point O € A. We also have symmetric spaces, which can be a sphere.

Let F be a field. An affine space of dimension n over F, A, is a principal (F",+)-set. A G-set,
the set on which G acts, is called principal G-set if the action is principal, i.e., transitive and free.

m Example 11.1 F” is an affine space of dimension n over I with the usual addition action of
(F",+) on itself.

(F",+) x F" — F"
(3,3) > 7+ ¥

For any X,y € F", there is a unique ¥ = ¥ — X € " such that V4 X = y. Therefore, the action is
transitive and free. "

In fact, any FF-linear space is a F-affine space.
Problem 11.1 Any set with 2 elements is an affine space over Z, in the unique way. However, for
3 elements, there does not have a unique affine space structure over Zs.

The model one of the A is Af := {(xi, - ,x,) | x; € F}. Then the group action is:

(F",4) x Ap — Ag
(V,X) = VX = (vi+x1,-- ,Vn+xp)
forall v = (vi,---,v,) € F" and X = (x1,--- ,x,) € A}. Moreover, up to isomorphism, there is only

one affine space of dimension n over F.
Similarly, we have the following conversion table:

Vector Space Affine Space
Linear Combinations Affine Combinations
Basis Affine Frame
Span Affine Span/Hull
Subspace Affine Subspace
Linear Map Affine Map
Linear Independence Affine Independence
Vectors Points

For the affine combinations, we have:

0 .1 k
p()?pla"'vpkeA) ¢ ,C,,C eF

with };c; = 1, then the affine combination is defined as:
Zcipi = O—I—Zci(pi -0)
i i

for some O € A and ¢’(p; — O) is the linear combination in the vector space ToA. Note that we
may have different O, let say O'. We may check the independence of the choice of O: We know
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that ' = O+ (O’ — 0), then we have:
dpi=0'+Y.c(pi—0)

i

=0+4(0'-0)+) c(pi—-0')

i

= 0+Zci(0/—0)+2ci(pi—0’)
i i

=0+).c((0'=0)+(pi—0))
i

:O+Zci(pi—0)

:Cipi |

For affine subspaces and spans, we consider the following diagram:

P2
Po

P1

The red line is the smallest affine subspace containing po and p;2, i.e., the affine span of py and
p1. We may write Span{po, p1} := {®po+c'p1 | P +c! =1,/ € RY = {tpo+ (1 —1t)p; |t ER}.
Note that popr = {tpo+ (1 —t)p1 | t € [0, 1]} is a subset of the affine span.

For the affine frame, we may consider the same picture above. Then {pg, p1, p2} is an affine
frame of the affine space (the plane) as no point is in the affine span of the other two points.

For the representation of the affine map, we have the following commutative diagram:

A ¢ Ay
Af AF
F” A [

¥=x—0+r—— 5 AX+b

where A € M,,,».,(F) and b € F™. Note that the representation of ¢ depends on the choice of origins
in A; and A,.

A Euclidean space is a finite-dimensional real affine space with a Euclidean structure on its
tangent space. The Euclidean structure means the translation invariant assignment of inner product
to each tangent space of A. Let A be an n-dimensional real affine space. Take p € A. Then the
pointed affine space (A, p) is isomorphic to the vector space 7,A. Moreover, it is equivalent to R"
with the standard inner product, and g € (A, p) corresponds to the vector ¥V = ¢ — p € R". Then we
have:

a1q1+ gy = p+ai1(q1 — p) + (g2 — p)
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Note that o + o need not be 1 here, as it is linear combination. Then the translation invariant
means that the length and angle remains unchanged in the inner product after translation, i.e.,

(pq,pr) = (P'q, p'r').

Then g = ¢'+V and r = ' 4 V. Note that T,A is different from 7, A as they are tangent spaces at
different points, but they are isomorphic via translation by v. We may consider the tangent line on
the circle at different points as an example.

Up to isomorphism, there is only one Euclidean space of dimension n, denoted by E" :=
(AR, (-,-)) where (-,-) is:

(Pg,pr) = (q—p)-(r—p)

where the - is the standard dot product on R”. This is equivalent to say that an orthogonal frame
exists, i.e., the rectangular coordinate system.

For an affine map ¢ : A; — A, between two affine spaces, we say that ¢ is injective implies

that dim A; < dim A,. The proof is by picking a point p; € A; and take p, = ¢(p;). Then we
have the following commutative diagram:

75,9
(Ar1,p1) ———— (A2, p2)
A ¢ Ay

We have two space-time affine space in Physics, namely Minkowski and Galilean.

The Minkowski space-time M is a 4-dimensional real affine space Aﬁ‘R with a Lorentz structure.
Take a point p € A}, and u = (ug,ii),v = (vo,¥) € R*. Then the Lorentzian inner product is
(u,v)p =ugvo — i - V.

The Galilean space-time G is a 4-dimensional real affine space Aﬁ‘R with a Galilean structure. It
is the Minkowski space-time taking the limit of light speed ¢ — oo. We have the following diagram:

() 7 (n) 74 (1) 7 (ty)

Event

! !
| |
| |
| |
| |
| |
| |
| |
& Py

153 13

>y — — — — — — — —

S SRS

Time: E!

~
—_
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Quadratic Form and Clifford Algebra

Let V be a vector space over a field F. A quadratic form on V is a map ¢ : V — F such that:

o g(av)=a*q(v)foralla € Fandv € V;

e The map B:V xV — F defined by B(u,v) = q(u+v) — g(u) — g(v) is bilinear.
In case char(F) # 2, the set of all quadratic forms on V is equivalent to the set of all symmetric
2-forms on V. A quadratic form g can define a symmetric 2-form as B(u,v) = 3 (q(u+v) — g(u) —
q(v)); a symmetric 2-form B can define a quadratic form g(«) := B(u,u). We have the matrix
representation of symmetric 2-form with respects to a basis. So we can also have the matrix
representation of quadratic form, which is the symmetric matrices over [ of order dimV = n.
Moreover, (V,q) forms a quadratic space.

Remark. When char(F) = 2, we may define a symmetric bilinear form B(u,v) = g(u+v) — q(u) — q(v).
However, the quadratic form cannot be recovered from the symmetric bilinear form as B(u,u) = 0 for all
u €V, and so it is alternating. However, we can use a new bilinear form B’, may not be symmetric, or
even not unique, such that g(u) = B'(u,u) forallu € V.

A Clifford algebra Cl(V,q) := T*V /I, is an associative algebra over I generated by v v —g(v)1
for all v € V. The ideal is equivalent to the ideal generated by u ® v+v® u — 2B(u,v)1 for all
u,v € V. Note that CI(V,q) is Z/ 2 graded algebra.

We have the following isomorphisms:

o CI(R*!) 2 C as R-algebras, where elements in CI(R*!) are of the form a+ be; with €3 = —1;

o CI(R'Y) =~ R@R, the split-complex number, where elements in CI(R!Y) are of the form

a+ bey with e% =1;

e CI(R%?) = M, the quaternion, as R-algebras, where elements in CI(R%?) are of the form

a+ bey + cey +dejey with e% = e% = —1and ejer = —eeq;
o CI(R"!) 22 M,,»(R), the split-quaternion, as R-algebras, where elements in CI(R!!) are of
the form a + be| + ces + dej ey with e% =1, e% = —1and ejer = —ereq;

o CI(R?9) 22 M,.»(R), the split-quaternion, as R-algebras.
The R, C and H are called the associative real division algebras.
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This is the end of the main content. Thank you for your support! I hope you have enjoyed my
notes!! By the way, I would like to remake this notes later after the final. If you are interested, find
me through Discord @stupidbenz, or Instagram @stupid.benz.0621.



We first state the formal definition of universal properties.

Definition A.1 — Universal Properties. Let F': C — D be a functor between two categories
C and D. A universal morphism from an object X € Ob(D) to the functor F is a unique pair
(A,u:X — F(A)) in D such that for any morphism f : X — F(A’) in D, there exists a unique
morphism f : A — A’ in C such that the following diagram commutes:

X —“ 5 FA) A
F(A") Al

Such a property is called the universal property of the object A. Note that the dual version of
universal morphism from F to X can be defined similarly.

Remark. Such an object A is an initial object in a new category:
e Objects: all pairs (B, f : X — F(B)) for all B € Ob(C);
e Morphisms: commutative diagrams in C:

F(B) ———— F(B)

The initial object in this category is exactly the object A with the universal property. This type of
construction is called the comma category and is denoted by (X | F).

Similarly, the dual version of terminal object can be defined for the dual version of universal
morphism, and the category is denoted by (F | X).
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A.1 Universal Properties of Limits

The following are the universal properties of some common limits in category theory.
e Products:

Xo 45— [1Xq
N
Z

e Kernel:

e Subspaces:
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A.2 Universal Properties of Colimits

The following are the universal properties of some common colimits in category theory.
e Coproducts:

Xy —%— [[Xq

7

i
Z

e Cokernel:

¢ Quotient Spaces:

o Free Vector Spaces:

X—7"1 S F

[X]

=5 __

<~

N 4---m-mmn

N -

e Tensor Products:

UxV —1 s UV

N - m-
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